File size: 10,948 Bytes
3d97611
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
import nltk
import mlflow
import hyperopt
from hyperopt import fmin, tpe, hp, STATUS_OK, Trials
from transformers import pipeline, AutoModelForSequenceClassification, AutoTokenizer, AutoModelForCausalLM
import torch
from sentence_transformers import SentenceTransformer, util
from bert_score import score
from nltk.translate.bleu_score import sentence_bleu, SmoothingFunction
from rouge import Rouge
from tqdm import tqdm
from datasets import load_metric

# Download necessary NLTK data
nltk.download('punkt')
nltk.download('stopwords')

# --- Load pre-trained models ---
# Research and update these with the most recent and powerful Portuguese models
semantic_similarity_model = SentenceTransformer('neuralmind/bert-large-portuguese-cased') 
perplexity_model_name = "unicamp-dl/ptt5-base-portuguese-vocab"  # Example: More recent GPT-like model
perplexity_model = AutoModelForCausalLM.from_pretrained(perplexity_model_name)
perplexity_tokenizer = AutoTokenizer.from_pretrained(perplexity_model_name)

# Load Hugging Face metrics
bertscore_metric = load_metric("bertscore")
bleu_metric = load_metric("bleu")
rouge_metric = load_metric("rouge")
meteor_metric = load_metric("meteor")  # Additional metric

# Load a powerful LLM for generating and judging content
generator_model_name = "gpt-3.5-turbo"  # Or GPT-4 or Gemini if available
generator = pipeline("text-generation", model=generator_model_name)
judge_model_name = generator_model_name  # Using the same model for judging
judge = pipeline("text-generation", model=judge_model_name)

# --- Helper Functions ---
def calculate_perplexity(text):
    """Calculates perplexity of text using a Portuguese LLM model."""
    try:
        with torch.no_grad():
            tokenize_input = perplexity_tokenizer.tokenize(text)
            tensor_input = perplexity_tokenizer.encode(text, return_tensors='pt')
            loss = perplexity_model(tensor_input, labels=tensor_input)[0]
            return torch.exp(loss).item()
    except Exception as e:
        print(f"Error calculating perplexity: {e}")
        return float('inf')


def estimate_semantic_similarity(generated_text, reference_text):
    """Estimates semantic similarity using a Portuguese Sentence Transformer."""
    try:
        embedding1 = semantic_similarity_model.encode(generated_text, convert_to_tensor=True)
        embedding2 = semantic_similarity_model.encode(reference_text, convert_to_tensor=True)
        cosine_sim = util.pytorch_cos_sim(embedding1, embedding2)
        return cosine_sim.item()
    except Exception as e:
        print(f"Error calculating semantic similarity: {e}")
        return 0.0 


def calculate_metrics(generated_text, reference_text):
    """Calculates BERTScore, BLEU, ROUGE, and METEOR metrics."""
    results = {}
    try:
        results['bertscore'] = bertscore_metric.compute(predictions=[generated_text], references=[reference_text], lang="pt")['f1'][0]
    except Exception as e:
        print(f"Error calculating BERTScore: {e}")
        results['bertscore'] = None

    try:
        bleu_results = bleu_metric.compute(predictions=[generated_text.split()], references=[[reference_text.split()]])
        results['bleu'] = bleu_results['bleu']
    except Exception as e:
        print(f"Error calculating BLEU: {e}")
        results['bleu'] = None

    try:
        rouge_results = rouge_metric.compute(predictions=[generated_text], references=[reference_text])
        results['rougeL'] = rouge_results['rougeL']
    except Exception as e:
        print(f"Error calculating ROUGE: {e}")
        results['rougeL'] = None

    try:
        meteor_results = meteor_metric.compute(predictions=[generated_text], references=[reference_text])
        results['meteor'] = meteor_results['meteor']
    except Exception as e:
        print(f"Error calculating METEOR: {e}")
        results['meteor'] = None

    return results


def get_llm_judgment(generated_text, reference_text):
    """Gets a judgment from a powerful LLM on the quality of the generated text."""
    prompt = f"""
    You are an expert in evaluating educational content. 
    Please evaluate the following generated text based on its accuracy, relevance, and clarity, 
    compared to the provided reference text.

    Reference Text:
    {reference_text}

    Generated Text:
    {generated_text}

    Provide your judgment as one of the following categories:
    - "no issues": The generated text is accurate, relevant, and clear.
    - "minor issues": The generated text has some minor issues, but is mostly acceptable.
    - "major issues": The generated text has significant issues and needs substantial revision. 
    """
    judgment = judge(prompt, max_length=50)[0]['generated_text'].strip()
    return judgment
    

# --- Content Analysis Function ---
def analyze_content_for_review(generated_text, reference_text, 
                                 similarity_threshold, 
                                 bertscore_threshold,
                                 bleu_threshold,
                                 rouge_threshold,
                                 meteor_threshold):
    """Analyzes content and flags potential issues based on provided thresholds and LLM judgment."""
    similarity = estimate_semantic_similarity(generated_text, reference_text)
    metrics = calculate_metrics(generated_text, reference_text)
    llm_judgment = get_llm_judgment(generated_text, reference_text)

    issues = []
    if similarity < similarity_threshold:
        issues.append(f"- **Low Semantic Similarity:** ({similarity:.2f}) Content might be off-topic or not factually aligned.")
    if metrics['bertscore'] and metrics['bertscore'] < bertscore_threshold:
        issues.append(f"- **Low BERTScore:** ({metrics['bertscore']:.2f}) There might be factual inaccuracies or significant paraphrasing.")
    if metrics['bleu'] and metrics['bleu'] < bleu_threshold:
        issues.append(f"- **Low BLEU Score:** ({metrics['bleu']:.2f}) The generated text might not be fluent or use appropriate wording.")
    if metrics['rougeL'] and metrics['rougeL'] < rouge_threshold:
        issues.append(f"- **Low ROUGE-L Score:** ({metrics['rougeL']:.2f}) The generated text might not cover important information from the reference.")
    if metrics['meteor'] and metrics['meteor'] < meteor_threshold:
        issues.append(f"- **Low METEOR Score:** ({metrics['meteor']:.2f}) The generated text might have poor word alignment with the reference.")

    # Use LLM judgment as the primary decision-maker
    if llm_judgment == "major issues":
        review_flag = True
        explanation = f"LLM Judgment: **Major Issues**\n" + "\n".join(issues)
    elif llm_judgment == "minor issues":
        review_flag = True
        explanation = f"LLM Judgment: **Minor Issues**\n" + "\n".join(issues)
    else:
        review_flag = False
        explanation = "LLM Judgment: **No Issues**"

    return {
        'review_flag': review_flag,
        'explanation': explanation,
        'semantic_similarity': similarity,
        'metrics': metrics,
        'llm_judgment': llm_judgment,
        'generated_text': generated_text,
        'reference_text': reference_text
    }


# --- Threshold Optimization Functions ---
def generate_educational_content(topic, num_sections=3):
    """Generates educational content with chapters, topics, sections, and subsections."""
    prompt = f"""
    Generate a chapter of educational content on the topic of "{topic}".
    The chapter should include {num_sections} sections, each with at least 
    one subsection. The content should be factually accurate, well-organized, 
    and written in clear and concise Portuguese.
    """
    generated_content = generator(prompt, max_length=1000)[0]['generated_text']
    return generated_content

def objective(params):
    """Objective function for Hyperopt to minimize."""
    similarity_threshold = params['similarity_threshold']
    bertscore_threshold = params['bertscore_threshold']
    bleu_threshold = params['bleu_threshold']
    rouge_threshold = params['rouge_threshold']
    meteor_threshold = params['meteor_threshold']

    # Generate AI-created data
    topics = ["Astronomia", "Biologia", "História", "Matemática", "Física", "Química"]  # More topics
    generated_texts = []
    reference_texts = []
    for topic in topics:
        reference_text = generate_educational_content(topic) 
        generated_text = generate_educational_content(topic) 
        generated_texts.append(generated_text)
        reference_texts.append(reference_text)

    total_errors = 0
    for gen_text, ref_text in zip(generated_texts, reference_texts):
        result = analyze_content_for_review(gen_text, ref_text,
                                            similarity_threshold,
                                            bertscore_threshold,
                                            bleu_threshold,
                                            rouge_threshold,
                                            meteor_threshold)
        if result['review_flag'] and result['llm_judgment'] == "no issues":
            total_errors += 1 

    # Log metrics and parameters to MLflow
    with mlflow.start_run():
        mlflow.log_params(params)
        mlflow.log_metric("total_errors", total_errors)

    return {'loss': total_errors, 'status': STATUS_OK}

    
# --- Main Execution ---
if __name__ == "__main__":
    # 1. Threshold Optimization Phase
    mlflow.set_tracking_uri("http://localhost:5000")  # Or your MLflow server URI
    search_space = { # Hyperparameter search space
        'similarity_threshold': hp.uniform('similarity_threshold', 0.5, 0.9),
        'bertscore_threshold': hp.uniform('bertscore_threshold', 0.7, 0.95),
        'bleu_threshold': hp.uniform('bleu_threshold', 0.4, 0.8),
        'rouge_threshold': hp.uniform('rouge_threshold', 0.4, 0.7),
        'meteor_threshold': hp.uniform('meteor_threshold', 0.3, 0.7)
    }
    trials = Trials()
    best_thresholds = fmin(fn=objective,
                space=search_space,
                algo=tpe.suggest,
                max_evals=50,  # Adjust the number of evaluations as needed
                trials=trials)
    print("Best thresholds found:", best_thresholds)

    # 2. Content Evaluation Phase (using the best thresholds)
    new_generated_text = generate_educational_content("Matemática") # Example
    new_reference_text = "Content from your educational material..." 

    evaluation_result = analyze_content_for_review(
        new_generated_text, new_reference_text,
        best_thresholds['similarity_threshold'],
        best_thresholds['bertscore_threshold'],
        best_thresholds['bleu_threshold'],
        best_thresholds['rouge_threshold'],
        best_thresholds['meteor_threshold']
    )

    print("\n----- Evaluation Result -----")
    print(f"Review Flag: {evaluation_result['review_flag']}")
    print(f"Explanation: {evaluation_result['explanation']}")