|
|
|
|
|
from pinecone import Pinecone |
|
from langchain_openai import AzureOpenAIEmbeddings |
|
import uuid |
|
import pandas as pd |
|
import streamlit as st |
|
|
|
|
|
pc = Pinecone(api_key=st.secrets["PC_API_KEY"]) |
|
index = pc.Index("openai-serverless") |
|
|
|
|
|
os.environ["AZURE_OPENAI_API_KEY"] = st.secrets["api_key"] |
|
os.environ["AZURE_OPENAI_ENDPOINT"] = "https://davidfearn-gpt4.openai.azure.com/" |
|
os.environ["AZURE_OPENAI_DEPLOYMENT_NAME"] = "text-embedding-ada-002" |
|
os.environ["AZURE_OPENAI_API_VERSION"] = "2024-08-01-preview" |
|
|
|
|
|
embeddings_model = AzureOpenAIEmbeddings( |
|
azure_endpoint=os.environ["AZURE_OPENAI_ENDPOINT"], |
|
azure_deployment=os.environ["AZURE_OPENAI_DEPLOYMENT_NAME"], |
|
openai_api_version=os.environ["AZURE_OPENAI_API_VERSION"], |
|
) |
|
|
|
def retriever(query, namespace="gskRegIntel", top_k=3): |
|
""" |
|
Embeds a query string and searches the vector database for similar entries. |
|
|
|
:param query: The string to embed and search for. |
|
:param namespace: Pinecone namespace to search within. |
|
:param top_k: Number of top results to retrieve. |
|
:return: List of search results with metadata and scores. |
|
""" |
|
try: |
|
|
|
query_embedding = embeddings_model.embed_query(query) |
|
|
|
|
|
results = index.query(vector=query_embedding, top_k=top_k, namespace=namespace, include_metadata=True) |
|
|
|
return results.matches |
|
|
|
except Exception as e: |
|
print(f"Error during search: {e}") |
|
return [] |