GenAI-image / app.py
CrazyEric's picture
Update app.py
165d847 verified
#!/usr/bin/env python
from __future__ import annotations
import os
import random
import gradio as gr
import numpy as np
import PIL.Image
import requests
import spaces
import torch
from diffusers import AutoencoderKL, DiffusionPipeline
DESCRIPTION = "# AI 作画"
if not torch.cuda.is_available():
DESCRIPTION += "\n<p>Running on CPU 🥶 This demo does not work on CPU.</p>"
MAX_SEED = np.iinfo(np.int32).max
CACHE_EXAMPLES = torch.cuda.is_available() and os.getenv("CACHE_EXAMPLES") == "1"
MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "1024"))
USE_TORCH_COMPILE = os.getenv("USE_TORCH_COMPILE") == "1"
ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD") == "1"
ENABLE_REFINER = os.getenv("ENABLE_REFINER", "1") == "1"
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
if torch.cuda.is_available():
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
pipe = DiffusionPipeline.from_pretrained(
"stabilityai/stable-diffusion-xl-base-1.0",
vae=vae,
torch_dtype=torch.float16,
use_safetensors=True,
variant="fp16",
)
if ENABLE_REFINER:
refiner = DiffusionPipeline.from_pretrained(
"stabilityai/stable-diffusion-xl-refiner-1.0",
vae=vae,
torch_dtype=torch.float16,
use_safetensors=True,
variant="fp16",
)
if ENABLE_CPU_OFFLOAD:
pipe.enable_model_cpu_offload()
if ENABLE_REFINER:
refiner.enable_model_cpu_offload()
else:
pipe.to(device)
if ENABLE_REFINER:
refiner.to(device)
if USE_TORCH_COMPILE:
pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True)
if ENABLE_REFINER:
refiner.unet = torch.compile(refiner.unet, mode="reduce-overhead", fullgraph=True)
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
if randomize_seed:
seed = random.randint(0, MAX_SEED)
return seed
def translateEN(zh):
if zh:
result = requests.post(
"https://api-free.deepl.com/v2/translate",
params={
"auth_key": "e8b4d428-ada5-3f8d-f965-bad01e8a06c1:fx",
"target_lang": "EN-US",
"text": zh})
return result.json()["translations"][0]["text"]
def process_text(prompt):
if prompt:
print("中文提示词: \n", prompt)
prompt_trans = translateEN(prompt)
print("prompt: \n", prompt_trans)
return prompt_trans
@spaces.GPU
def generate(
prompt: str,
# size_option: str = "竖版",
negative_prompt: str = "",
prompt_2: str = "",
negative_prompt_2: str = "",
use_negative_prompt: bool = False,
use_prompt_2: bool = False,
use_negative_prompt_2: bool = False,
seed: int = 0,
width: int = 736,
height: int = 1024,
guidance_scale_base: float = 5.0,
guidance_scale_refiner: float = 5.0,
num_inference_steps_base: int = 25,
num_inference_steps_refiner: int = 25,
apply_refiner: bool = False,
) -> PIL.Image.Image:
generator = torch.Generator().manual_seed(seed)
if not use_negative_prompt:
negative_prompt = None # type: ignore
if not use_prompt_2:
prompt_2 = None # type: ignore
if not use_negative_prompt_2:
negative_prompt_2 = None # type: ignore
# if size_option == "横版":
# width, height = 1024, 736
# elif size_option == "竖版":
# width, height = 736, 1024
# elif size_option == "方形":
# width, height = 736, 736
# else:
# width, height = 736, 1024 # 可以定义一个默认值
# process_text("里面做一个测试")
# print("prompt是:", prompt)
# print("negative_prompt是:", negative_prompt)
# print("prompt_2是:", prompt_2)
# print("negative_prompt_2是:", negative_prompt_2)
if not apply_refiner:
return pipe(
prompt=process_text(prompt),
negative_prompt=process_text(negative_prompt),
prompt_2=process_text(prompt_2),
negative_prompt_2=process_text(negative_prompt_2),
width=width,
height=height,
guidance_scale=guidance_scale_base,
num_inference_steps=num_inference_steps_base,
generator=generator,
output_type="pil",
).images[0]
else:
latents = pipe(
prompt=process_text(prompt),
negative_prompt=process_text(negative_prompt),
prompt_2=process_text(prompt_2),
negative_prompt_2=process_text(negative_prompt_2),
width=width,
height=height,
guidance_scale=guidance_scale_base,
num_inference_steps=num_inference_steps_base,
generator=generator,
output_type="latent",
).images
image = refiner(
prompt=process_text(prompt),
negative_prompt=process_text(negative_prompt),
prompt_2=process_text(prompt_2),
negative_prompt_2=process_text(negative_prompt_2),
guidance_scale=guidance_scale_refiner,
num_inference_steps=num_inference_steps_refiner,
image=latents,
generator=generator,
).images[0]
return image
examples = [
"宇航员在丛林中,冷色调,柔和的色彩,细节,8k",
"一只熊猫戴着草帽,在湖面上划船,电影风格,4K",
]
with gr.Blocks(css="style.css") as demo:
gr.Markdown(DESCRIPTION)
gr.DuplicateButton(
value="Duplicate Space for private use",
elem_id="duplicate-button",
visible=os.getenv("SHOW_DUPLICATE_BUTTON") == "1",
)
with gr.Group():
with gr.Row():
prompt = gr.Text(
label="提示词",
show_label=False,
max_lines=1,
placeholder="输入要生成的画面内容",
container=False,
)
run_button = gr.Button("生成", scale=0)
result = gr.Image(label="生成结果", show_label=False)
# # 使用 Radio 组件替代两个 Slider 组件
# size_option = gr.Radio(choices=["横版", "竖版", "方形"], label="选择尺寸", value="竖版")
with gr.Accordion("高级选项", open=False):
with gr.Row():
use_negative_prompt = gr.Checkbox(label="使用反向提示词", value=False)
use_prompt_2 = gr.Checkbox(label="使用提示词 2", value=False)
use_negative_prompt_2 = gr.Checkbox(label="使用反向提示词 2", value=False)
negative_prompt = gr.Text(
label="反向提示词",
max_lines=1,
placeholder="输入不想在画面中出现的内容,比如:“胡子”,“人群”",
visible=False,
)
prompt_2 = gr.Text(
label="提示词 2",
max_lines=1,
placeholder="输入你的提示词",
visible=False,
)
negative_prompt_2 = gr.Text(
label="反向提示词 2",
max_lines=1,
placeholder="输入你的反向提示词",
visible=False,
)
seed = gr.Slider(
label="种子数",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="随机种子数", value=True)
with gr.Row():
width = gr.Slider(
label="宽度",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=736,
)
height = gr.Slider(
label="高度",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
apply_refiner = gr.Checkbox(label="增加精炼模型(refiner)", value=False, visible=ENABLE_REFINER)
with gr.Row():
guidance_scale_base = gr.Slider(
label="提示词相关性",
minimum=1,
maximum=20,
step=0.1,
value=7.5,
)
num_inference_steps_base = gr.Slider(
label="模型迭代步数",
minimum=10,
maximum=100,
step=1,
value=25,
)
with gr.Row(visible=False) as refiner_params:
guidance_scale_refiner = gr.Slider(
label="提示词相关性(refiner)",
minimum=1,
maximum=20,
step=0.1,
value=7.5,
)
num_inference_steps_refiner = gr.Slider(
label="模型迭代步数(refiner)",
minimum=10,
maximum=100,
step=1,
value=25,
)
gr.Examples(
label="例子",
examples=examples,
inputs=prompt,
outputs=result,
fn=generate,
cache_examples=CACHE_EXAMPLES,
)
use_negative_prompt.change(
fn=lambda x: gr.update(visible=x),
inputs=use_negative_prompt,
outputs=negative_prompt,
queue=False,
api_name=False,
)
use_prompt_2.change(
fn=lambda x: gr.update(visible=x),
inputs=use_prompt_2,
outputs=prompt_2,
queue=False,
api_name=False,
)
use_negative_prompt_2.change(
fn=lambda x: gr.update(visible=x),
inputs=use_negative_prompt_2,
outputs=negative_prompt_2,
queue=False,
api_name=False,
)
apply_refiner.change(
fn=lambda x: gr.update(visible=x),
inputs=apply_refiner,
outputs=refiner_params,
queue=False,
api_name=False,
)
gr.on(
triggers=[
prompt.submit,
negative_prompt.submit,
prompt_2.submit,
negative_prompt_2.submit,
run_button.click,
],
fn=randomize_seed_fn,
inputs=[seed, randomize_seed],
outputs=seed,
queue=False,
api_name=False,
).then(
fn=generate,
inputs=[
prompt,
# size_option,
negative_prompt,
prompt_2,
negative_prompt_2,
use_negative_prompt,
use_prompt_2,
use_negative_prompt_2,
seed,
width,
height,
guidance_scale_base,
guidance_scale_refiner,
num_inference_steps_base,
num_inference_steps_refiner,
apply_refiner,
],
outputs=result,
api_name="run",
)
if __name__ == "__main__":
demo.queue(max_size=30).launch(max_threads=2)