Spaces:
Sleeping
Sleeping
#!/usr/bin/env python | |
from __future__ import annotations | |
import os | |
import random | |
import gradio as gr | |
import numpy as np | |
import PIL.Image | |
import requests | |
import spaces | |
import torch | |
from diffusers import AutoencoderKL, DiffusionPipeline | |
DESCRIPTION = "# AI 作画" | |
if not torch.cuda.is_available(): | |
DESCRIPTION += "\n<p>Running on CPU 🥶 This demo does not work on CPU.</p>" | |
MAX_SEED = np.iinfo(np.int32).max | |
CACHE_EXAMPLES = torch.cuda.is_available() and os.getenv("CACHE_EXAMPLES") == "1" | |
MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "1024")) | |
USE_TORCH_COMPILE = os.getenv("USE_TORCH_COMPILE") == "1" | |
ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD") == "1" | |
ENABLE_REFINER = os.getenv("ENABLE_REFINER", "1") == "1" | |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") | |
if torch.cuda.is_available(): | |
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16) | |
pipe = DiffusionPipeline.from_pretrained( | |
"stabilityai/stable-diffusion-xl-base-1.0", | |
vae=vae, | |
torch_dtype=torch.float16, | |
use_safetensors=True, | |
variant="fp16", | |
) | |
if ENABLE_REFINER: | |
refiner = DiffusionPipeline.from_pretrained( | |
"stabilityai/stable-diffusion-xl-refiner-1.0", | |
vae=vae, | |
torch_dtype=torch.float16, | |
use_safetensors=True, | |
variant="fp16", | |
) | |
if ENABLE_CPU_OFFLOAD: | |
pipe.enable_model_cpu_offload() | |
if ENABLE_REFINER: | |
refiner.enable_model_cpu_offload() | |
else: | |
pipe.to(device) | |
if ENABLE_REFINER: | |
refiner.to(device) | |
if USE_TORCH_COMPILE: | |
pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True) | |
if ENABLE_REFINER: | |
refiner.unet = torch.compile(refiner.unet, mode="reduce-overhead", fullgraph=True) | |
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int: | |
if randomize_seed: | |
seed = random.randint(0, MAX_SEED) | |
return seed | |
def translateEN(zh): | |
if zh: | |
result = requests.post( | |
"https://api-free.deepl.com/v2/translate", | |
params={ | |
"auth_key": "e8b4d428-ada5-3f8d-f965-bad01e8a06c1:fx", | |
"target_lang": "EN-US", | |
"text": zh}) | |
return result.json()["translations"][0]["text"] | |
def process_text(prompt): | |
if prompt: | |
print("中文提示词: \n", prompt) | |
prompt_trans = translateEN(prompt) | |
print("prompt: \n", prompt_trans) | |
return prompt_trans | |
# 定义一个函数来处理图片尺寸的选择 | |
def set_size(option): | |
if option == "横版": | |
width, height = 1024, 736 | |
elif option == "竖版": | |
width, height = 736, 1024 | |
elif option == "方形": | |
width, height = 736, 736 | |
else: | |
width, height = 736, 1024 # 可以定义一个默认值 | |
return width, height | |
def generate( | |
prompt: str, | |
negative_prompt: str = "", | |
prompt_2: str = "", | |
negative_prompt_2: str = "", | |
use_negative_prompt: bool = False, | |
use_prompt_2: bool = False, | |
use_negative_prompt_2: bool = False, | |
seed: int = 0, | |
width: int = 736, | |
height: int = 1024, | |
guidance_scale_base: float = 5.0, | |
guidance_scale_refiner: float = 5.0, | |
num_inference_steps_base: int = 25, | |
num_inference_steps_refiner: int = 25, | |
apply_refiner: bool = False, | |
) -> PIL.Image.Image: | |
generator = torch.Generator().manual_seed(seed) | |
if not use_negative_prompt: | |
negative_prompt = None # type: ignore | |
if not use_prompt_2: | |
prompt_2 = None # type: ignore | |
if not use_negative_prompt_2: | |
negative_prompt_2 = None # type: ignore | |
# process_text("里面做一个测试") | |
# print("prompt是:", prompt) | |
# print("negative_prompt是:", negative_prompt) | |
# print("prompt_2是:", prompt_2) | |
# print("negative_prompt_2是:", negative_prompt_2) | |
if not apply_refiner: | |
return pipe( | |
prompt=process_text(prompt), | |
negative_prompt=process_text(negative_prompt), | |
prompt_2=process_text(prompt_2), | |
negative_prompt_2=process_text(negative_prompt_2), | |
width=width, | |
height=height, | |
guidance_scale=guidance_scale_base, | |
num_inference_steps=num_inference_steps_base, | |
generator=generator, | |
output_type="pil", | |
).images[0] | |
else: | |
latents = pipe( | |
prompt=process_text(prompt), | |
negative_prompt=process_text(negative_prompt), | |
prompt_2=process_text(prompt_2), | |
negative_prompt_2=process_text(negative_prompt_2), | |
width=width, | |
height=height, | |
guidance_scale=guidance_scale_base, | |
num_inference_steps=num_inference_steps_base, | |
generator=generator, | |
output_type="latent", | |
).images | |
image = refiner( | |
prompt=process_text(prompt), | |
negative_prompt=process_text(negative_prompt), | |
prompt_2=process_text(prompt_2), | |
negative_prompt_2=process_text(negative_prompt_2), | |
guidance_scale=guidance_scale_refiner, | |
num_inference_steps=num_inference_steps_refiner, | |
image=latents, | |
generator=generator, | |
).images[0] | |
return image | |
examples = [ | |
"宇航员在丛林中,冷色调,柔和的色彩,细节,8k", | |
"一只熊猫戴着草帽,在湖面上划船,电影风格,4K", | |
] | |
with gr.Blocks(css="style.css") as demo: | |
gr.Markdown(DESCRIPTION) | |
gr.DuplicateButton( | |
value="Duplicate Space for private use", | |
elem_id="duplicate-button", | |
visible=os.getenv("SHOW_DUPLICATE_BUTTON") == "1", | |
) | |
with gr.Group(): | |
with gr.Row(): | |
prompt = gr.Text( | |
label="提示词", | |
show_label=False, | |
max_lines=1, | |
placeholder="输入要生成的画面内容", | |
container=False, | |
) | |
run_button = gr.Button("生成", scale=0) | |
result = gr.Image(label="生成结果", show_label=False) | |
with gr.Accordion("高级选项", open=False): | |
with gr.Row(): | |
use_negative_prompt = gr.Checkbox(label="使用反向提示词", value=False) | |
use_prompt_2 = gr.Checkbox(label="使用提示词 2", value=False) | |
use_negative_prompt_2 = gr.Checkbox(label="使用反向提示词 2", value=False) | |
negative_prompt = gr.Text( | |
label="反向提示词", | |
max_lines=1, | |
placeholder="输入不想在画面中出现的内容,比如:“胡子”,“人群”", | |
visible=False, | |
) | |
prompt_2 = gr.Text( | |
label="提示词 2", | |
max_lines=1, | |
placeholder="输入你的提示词", | |
visible=False, | |
) | |
negative_prompt_2 = gr.Text( | |
label="反向提示词 2", | |
max_lines=1, | |
placeholder="输入你的反向提示词", | |
visible=False, | |
) | |
seed = gr.Slider( | |
label="种子数", | |
minimum=0, | |
maximum=MAX_SEED, | |
step=1, | |
value=0, | |
) | |
randomize_seed = gr.Checkbox(label="随机种子数", value=True) | |
# 使用 Radio 组件替代两个 Slider 组件 | |
size_option = gr.Radio(choices=["横版", "竖版", "方形"], label="选择尺寸", value="竖版") | |
# with gr.Row(): | |
# width = gr.Slider( | |
# label="宽度", | |
# minimum=256, | |
# maximum=MAX_IMAGE_SIZE, | |
# step=32, | |
# value=736, | |
# ) | |
# height = gr.Slider( | |
# label="高度", | |
# minimum=256, | |
# maximum=MAX_IMAGE_SIZE, | |
# step=32, | |
# value=1024, | |
# ) | |
apply_refiner = gr.Checkbox(label="增加精炼模型(refiner)", value=False, visible=ENABLE_REFINER) | |
with gr.Row(): | |
guidance_scale_base = gr.Slider( | |
label="提示词相关性", | |
minimum=1, | |
maximum=20, | |
step=0.1, | |
value=7.5, | |
) | |
num_inference_steps_base = gr.Slider( | |
label="模型迭代步数", | |
minimum=10, | |
maximum=100, | |
step=1, | |
value=25, | |
) | |
with gr.Row(visible=False) as refiner_params: | |
guidance_scale_refiner = gr.Slider( | |
label="提示词相关性(refiner)", | |
minimum=1, | |
maximum=20, | |
step=0.1, | |
value=7.5, | |
) | |
num_inference_steps_refiner = gr.Slider( | |
label="模型迭代步数(refiner)", | |
minimum=10, | |
maximum=100, | |
step=1, | |
value=25, | |
) | |
# 使用 size_option 的选择结果来动态设置 width 和 height 的值 | |
size_option.change(fn=set_size, inputs=size_option, outputs=[width, height]) | |
gr.Examples( | |
label="例子", | |
examples=examples, | |
inputs=prompt, | |
outputs=result, | |
fn=generate, | |
cache_examples=CACHE_EXAMPLES, | |
) | |
use_negative_prompt.change( | |
fn=lambda x: gr.update(visible=x), | |
inputs=use_negative_prompt, | |
outputs=negative_prompt, | |
queue=False, | |
api_name=False, | |
) | |
use_prompt_2.change( | |
fn=lambda x: gr.update(visible=x), | |
inputs=use_prompt_2, | |
outputs=prompt_2, | |
queue=False, | |
api_name=False, | |
) | |
use_negative_prompt_2.change( | |
fn=lambda x: gr.update(visible=x), | |
inputs=use_negative_prompt_2, | |
outputs=negative_prompt_2, | |
queue=False, | |
api_name=False, | |
) | |
apply_refiner.change( | |
fn=lambda x: gr.update(visible=x), | |
inputs=apply_refiner, | |
outputs=refiner_params, | |
queue=False, | |
api_name=False, | |
) | |
gr.on( | |
triggers=[ | |
prompt.submit, | |
negative_prompt.submit, | |
prompt_2.submit, | |
negative_prompt_2.submit, | |
run_button.click, | |
], | |
fn=randomize_seed_fn, | |
inputs=[seed, randomize_seed], | |
outputs=seed, | |
queue=False, | |
api_name=False, | |
).then( | |
fn=generate, | |
inputs=[ | |
prompt, | |
negative_prompt, | |
prompt_2, | |
negative_prompt_2, | |
use_negative_prompt, | |
use_prompt_2, | |
use_negative_prompt_2, | |
seed, | |
width, | |
height, | |
guidance_scale_base, | |
guidance_scale_refiner, | |
num_inference_steps_base, | |
num_inference_steps_refiner, | |
apply_refiner, | |
], | |
outputs=result, | |
api_name="run", | |
) | |
if __name__ == "__main__": | |
demo.queue(max_size=30).launch(max_threads=2) | |