File size: 9,414 Bytes
0edd51d
 
 
 
 
 
 
 
 
 
8a50ffc
0edd51d
d8fa9a9
0edd51d
00325e0
0edd51d
89539f7
0edd51d
 
89539f7
 
 
 
 
0edd51d
89539f7
0edd51d
d8fa9a9
0edd51d
89539f7
d8fa9a9
0edd51d
 
89539f7
 
928d246
 
89539f7
d8fa9a9
928d246
 
89539f7
 
0edd51d
 
 
928d246
 
0edd51d
 
928d246
 
0edd51d
 
89539f7
928d246
89539f7
0edd51d
 
 
 
 
 
 
 
8a50ffc
89539f7
 
 
 
 
 
 
 
 
 
 
 
 
d8fa9a9
 
89539f7
 
0edd51d
 
 
 
 
 
 
 
 
 
89539f7
 
 
 
 
 
 
 
 
 
 
 
0edd51d
89539f7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0edd51d
 
 
 
00325e0
 
0edd51d
 
89539f7
0edd51d
89539f7
 
 
 
 
f864b44
0edd51d
 
00325e0
0edd51d
 
00325e0
0edd51d
 
00325e0
 
 
f864b44
00325e0
 
 
f864b44
00325e0
f864b44
00325e0
f864b44
 
 
00325e0
f864b44
00325e0
f864b44
 
00325e0
 
f864b44
00325e0
f864b44
 
 
89539f7
00325e0
89539f7
 
 
 
 
00325e0
f864b44
 
00325e0
f864b44
 
 
00325e0
0edd51d
f864b44
00325e0
f864b44
 
 
 
0edd51d
00325e0
f864b44
89539f7
00325e0
89539f7
 
 
00325e0
89539f7
f864b44
00325e0
f864b44
 
 
d8fa9a9
89539f7
f864b44
 
00325e0
f864b44
 
 
00325e0
89539f7
f864b44
00325e0
f864b44
 
 
d8fa9a9
89539f7
0edd51d
89539f7
 
 
 
 
 
 
0edd51d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
59bd43d
 
 
 
 
 
 
 
0edd51d
 
 
 
 
 
 
59bd43d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0edd51d
89539f7
0edd51d
89539f7
 
00325e0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
#!/usr/bin/env python

from __future__ import annotations

import os
import random

import gradio as gr
import numpy as np
import PIL.Image
import spaces
import torch
from diffusers import AutoencoderKL, DiffusionPipeline

DESCRIPTION = "# AI 作画"
if not torch.cuda.is_available():
    DESCRIPTION += "\n<p>Running on CPU 🥶 This demo does not work on CPU.</p>"

MAX_SEED = np.iinfo(np.int32).max
CACHE_EXAMPLES = torch.cuda.is_available() and os.getenv("CACHE_EXAMPLES") == "1"
MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "1024"))
USE_TORCH_COMPILE = os.getenv("USE_TORCH_COMPILE") == "1"
ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD") == "1"
ENABLE_REFINER = os.getenv("ENABLE_REFINER", "1") == "1"

device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
if torch.cuda.is_available():
    vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
    pipe = DiffusionPipeline.from_pretrained(
        "stabilityai/stable-diffusion-xl-base-1.0",
        vae=vae,
        torch_dtype=torch.float16,
        use_safetensors=True,
        variant="fp16",
    )
    if ENABLE_REFINER:
        refiner = DiffusionPipeline.from_pretrained(
            "stabilityai/stable-diffusion-xl-refiner-1.0",
            vae=vae,
            torch_dtype=torch.float16,
            use_safetensors=True,
            variant="fp16",
        )

    if ENABLE_CPU_OFFLOAD:
        pipe.enable_model_cpu_offload()
        if ENABLE_REFINER:
            refiner.enable_model_cpu_offload()
    else:
        pipe.to(device)
        if ENABLE_REFINER:
            refiner.to(device)

    if USE_TORCH_COMPILE:
        pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True)
        if ENABLE_REFINER:
            refiner.unet = torch.compile(refiner.unet, mode="reduce-overhead", fullgraph=True)


def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
    return seed


@spaces.GPU
def generate(
    prompt: str,
    negative_prompt: str = "",
    prompt_2: str = "",
    negative_prompt_2: str = "",
    use_negative_prompt: bool = False,
    use_prompt_2: bool = False,
    use_negative_prompt_2: bool = False,
    seed: int = 0,
    width: int = 1024,
    height: int = 1024,
    guidance_scale_base: float = 5.0,
    guidance_scale_refiner: float = 5.0,
    num_inference_steps_base: int = 25,
    num_inference_steps_refiner: int = 25,
    apply_refiner: bool = False,
) -> PIL.Image.Image:
    generator = torch.Generator().manual_seed(seed)

    if not use_negative_prompt:
        negative_prompt = None  # type: ignore
    if not use_prompt_2:
        prompt_2 = None  # type: ignore
    if not use_negative_prompt_2:
        negative_prompt_2 = None  # type: ignore

    if not apply_refiner:
        return pipe(
            prompt=prompt,
            negative_prompt=negative_prompt,
            prompt_2=prompt_2,
            negative_prompt_2=negative_prompt_2,
            width=width,
            height=height,
            guidance_scale=guidance_scale_base,
            num_inference_steps=num_inference_steps_base,
            generator=generator,
            output_type="pil",
        ).images[0]
    else:
        latents = pipe(
            prompt=prompt,
            negative_prompt=negative_prompt,
            prompt_2=prompt_2,
            negative_prompt_2=negative_prompt_2,
            width=width,
            height=height,
            guidance_scale=guidance_scale_base,
            num_inference_steps=num_inference_steps_base,
            generator=generator,
            output_type="latent",
        ).images
        image = refiner(
            prompt=prompt,
            negative_prompt=negative_prompt,
            prompt_2=prompt_2,
            negative_prompt_2=negative_prompt_2,
            guidance_scale=guidance_scale_refiner,
            num_inference_steps=num_inference_steps_refiner,
            image=latents,
            generator=generator,
        ).images[0]
        return image


examples = [
    "宇航员在丛林中,冷色调,柔和的色彩,细节,8k",
    "一只熊猫戴着草帽,在湖面上划船,电影风格,4K",
]

with gr.Blocks(css="style.css") as demo:
    gr.Markdown(DESCRIPTION)
    gr.DuplicateButton(
        value="Duplicate Space for private use",
        elem_id="duplicate-button",
        visible=os.getenv("SHOW_DUPLICATE_BUTTON") == "1",
    )
    with gr.Group():
        with gr.Row():
            prompt = gr.Text(
                label="提示词",
                show_label=False,
                max_lines=1,
                placeholder="输入要生成的画面内容",
                container=False,
            )
            run_button = gr.Button("生成", scale=0)
        result = gr.Image(label="生成结果", show_label=False)
    with gr.Accordion("高级选项", open=False):
        with gr.Row():
            use_negative_prompt = gr.Checkbox(label="使用反向提示词", value=False)
            use_prompt_2 = gr.Checkbox(label="使用提示词 2", value=False)
            use_negative_prompt_2 = gr.Checkbox(label="使用反向提示词 2", value=False)
        negative_prompt = gr.Text(
            label="反向提示词",
            max_lines=1,
            placeholder="输入不想在画面中出现的内容,比如:“胡子”,“人群”",
            visible=False,
        )
        prompt_2 = gr.Text(
            label="提示词 2",
            max_lines=1,
            placeholder="输入你的提示词",
            visible=False,
        negative_prompt_2 = gr.Text(
        )
            label="反向提示词 2",
            max_lines=1,
            placeholder="输入你的反向提示词",
            visible=False,
        )

        seed = gr.Slider(
            label="种子数",
            minimum=0,
            maximum=MAX_SEED,
            step=1,
            value=0,
        )
        randomize_seed = gr.Checkbox(label="随机种子数", value=True)
        with gr.Row():
            width = gr.Slider(
                label="宽",
                minimum=256,
                maximum=MAX_IMAGE_SIZE,
                step=32,
                value=736,
            )
            height = gr.Slider(
                label="高",
                minimum=256,
                maximum=MAX_IMAGE_SIZE,
                step=32,
                value=1024,
            )
        apply_refiner = gr.Checkbox(label="增加精炼模型(refiner)", value=False, visible=ENABLE_REFINER)
        with gr.Row():
            guidance_scale_base = gr.Slider(
                label="提示词相关性",
                minimum=1,
                maximum=20,
                step=0.1,
                value=7.5,
            )
            num_inference_steps_base = gr.Slider(
                label="模型迭代步数",
                minimum=10,
                maximum=100,
                step=1,
                value=25,
            )
        with gr.Row(visible=False) as refiner_params:
            guidance_scale_refiner = gr.Slider(
                label="提示词相关性(refiner)",
                minimum=1,
                maximum=20,
                step=0.1,
                value=7.5,
            )
            num_inference_steps_refiner = gr.Slider(
                label="模型迭代步数(refiner)",
                minimum=10,
                maximum=100,
                step=1,
                value=25,
            )

    gr.Examples(
        examples=examples,
        inputs=prompt,
        outputs=result,
        fn=generate,
        cache_examples=CACHE_EXAMPLES,
    )

    use_negative_prompt.change(
        fn=lambda x: gr.update(visible=x),
        inputs=use_negative_prompt,
        outputs=negative_prompt,
        queue=False,
        api_name=False,
    )
    use_prompt_2.change(
        fn=lambda x: gr.update(visible=x),
        inputs=use_prompt_2,
        outputs=prompt_2,
        queue=False,
        api_name=False,
    )
    use_negative_prompt_2.change(
        fn=lambda x: gr.update(visible=x),
        inputs=use_negative_prompt_2,
        outputs=negative_prompt_2,
        queue=False,
        api_name=False,
    )
    apply_refiner.change(
        fn=lambda x: gr.update(visible=x),
        inputs=apply_refiner,
        outputs=refiner_params,
        queue=False,
        api_name=False,
    )

    gr.on(
        triggers=[
            prompt.submit,
            negative_prompt.submit,
            prompt_2.submit,
            negative_prompt_2.submit,
            run_button.click,
        ],
        fn=randomize_seed_fn,
        inputs=[seed, randomize_seed],
        outputs=seed,
        queue=False,
        api_name=False,
    ).then(
        fn=generate,
        inputs=[
            prompt,
            negative_prompt,
            prompt_2,
            negative_prompt_2,
            use_negative_prompt,
            use_prompt_2,
            use_negative_prompt_2,
            seed,
            width,
            height,
            guidance_scale_base,
            guidance_scale_refiner,
            num_inference_steps_base,
            num_inference_steps_refiner,
            apply_refiner,
        ],
        outputs=result,
        api_name="run",
    )

if __name__ == "__main__":
    demo.queue(max_size=30).launch()