Spaces:
Sleeping
Sleeping
File size: 9,414 Bytes
0edd51d 8a50ffc 0edd51d d8fa9a9 0edd51d 00325e0 0edd51d 89539f7 0edd51d 89539f7 0edd51d 89539f7 0edd51d d8fa9a9 0edd51d 89539f7 d8fa9a9 0edd51d 89539f7 928d246 89539f7 d8fa9a9 928d246 89539f7 0edd51d 928d246 0edd51d 928d246 0edd51d 89539f7 928d246 89539f7 0edd51d 8a50ffc 89539f7 d8fa9a9 89539f7 0edd51d 89539f7 0edd51d 89539f7 0edd51d 00325e0 0edd51d 89539f7 0edd51d 89539f7 f864b44 0edd51d 00325e0 0edd51d 00325e0 0edd51d 00325e0 f864b44 00325e0 f864b44 00325e0 f864b44 00325e0 f864b44 00325e0 f864b44 00325e0 f864b44 00325e0 f864b44 00325e0 f864b44 89539f7 00325e0 89539f7 00325e0 f864b44 00325e0 f864b44 00325e0 0edd51d f864b44 00325e0 f864b44 0edd51d 00325e0 f864b44 89539f7 00325e0 89539f7 00325e0 89539f7 f864b44 00325e0 f864b44 d8fa9a9 89539f7 f864b44 00325e0 f864b44 00325e0 89539f7 f864b44 00325e0 f864b44 d8fa9a9 89539f7 0edd51d 89539f7 0edd51d 59bd43d 0edd51d 59bd43d 0edd51d 89539f7 0edd51d 89539f7 00325e0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 |
#!/usr/bin/env python
from __future__ import annotations
import os
import random
import gradio as gr
import numpy as np
import PIL.Image
import spaces
import torch
from diffusers import AutoencoderKL, DiffusionPipeline
DESCRIPTION = "# AI 作画"
if not torch.cuda.is_available():
DESCRIPTION += "\n<p>Running on CPU 🥶 This demo does not work on CPU.</p>"
MAX_SEED = np.iinfo(np.int32).max
CACHE_EXAMPLES = torch.cuda.is_available() and os.getenv("CACHE_EXAMPLES") == "1"
MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "1024"))
USE_TORCH_COMPILE = os.getenv("USE_TORCH_COMPILE") == "1"
ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD") == "1"
ENABLE_REFINER = os.getenv("ENABLE_REFINER", "1") == "1"
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
if torch.cuda.is_available():
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
pipe = DiffusionPipeline.from_pretrained(
"stabilityai/stable-diffusion-xl-base-1.0",
vae=vae,
torch_dtype=torch.float16,
use_safetensors=True,
variant="fp16",
)
if ENABLE_REFINER:
refiner = DiffusionPipeline.from_pretrained(
"stabilityai/stable-diffusion-xl-refiner-1.0",
vae=vae,
torch_dtype=torch.float16,
use_safetensors=True,
variant="fp16",
)
if ENABLE_CPU_OFFLOAD:
pipe.enable_model_cpu_offload()
if ENABLE_REFINER:
refiner.enable_model_cpu_offload()
else:
pipe.to(device)
if ENABLE_REFINER:
refiner.to(device)
if USE_TORCH_COMPILE:
pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True)
if ENABLE_REFINER:
refiner.unet = torch.compile(refiner.unet, mode="reduce-overhead", fullgraph=True)
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
if randomize_seed:
seed = random.randint(0, MAX_SEED)
return seed
@spaces.GPU
def generate(
prompt: str,
negative_prompt: str = "",
prompt_2: str = "",
negative_prompt_2: str = "",
use_negative_prompt: bool = False,
use_prompt_2: bool = False,
use_negative_prompt_2: bool = False,
seed: int = 0,
width: int = 1024,
height: int = 1024,
guidance_scale_base: float = 5.0,
guidance_scale_refiner: float = 5.0,
num_inference_steps_base: int = 25,
num_inference_steps_refiner: int = 25,
apply_refiner: bool = False,
) -> PIL.Image.Image:
generator = torch.Generator().manual_seed(seed)
if not use_negative_prompt:
negative_prompt = None # type: ignore
if not use_prompt_2:
prompt_2 = None # type: ignore
if not use_negative_prompt_2:
negative_prompt_2 = None # type: ignore
if not apply_refiner:
return pipe(
prompt=prompt,
negative_prompt=negative_prompt,
prompt_2=prompt_2,
negative_prompt_2=negative_prompt_2,
width=width,
height=height,
guidance_scale=guidance_scale_base,
num_inference_steps=num_inference_steps_base,
generator=generator,
output_type="pil",
).images[0]
else:
latents = pipe(
prompt=prompt,
negative_prompt=negative_prompt,
prompt_2=prompt_2,
negative_prompt_2=negative_prompt_2,
width=width,
height=height,
guidance_scale=guidance_scale_base,
num_inference_steps=num_inference_steps_base,
generator=generator,
output_type="latent",
).images
image = refiner(
prompt=prompt,
negative_prompt=negative_prompt,
prompt_2=prompt_2,
negative_prompt_2=negative_prompt_2,
guidance_scale=guidance_scale_refiner,
num_inference_steps=num_inference_steps_refiner,
image=latents,
generator=generator,
).images[0]
return image
examples = [
"宇航员在丛林中,冷色调,柔和的色彩,细节,8k",
"一只熊猫戴着草帽,在湖面上划船,电影风格,4K",
]
with gr.Blocks(css="style.css") as demo:
gr.Markdown(DESCRIPTION)
gr.DuplicateButton(
value="Duplicate Space for private use",
elem_id="duplicate-button",
visible=os.getenv("SHOW_DUPLICATE_BUTTON") == "1",
)
with gr.Group():
with gr.Row():
prompt = gr.Text(
label="提示词",
show_label=False,
max_lines=1,
placeholder="输入要生成的画面内容",
container=False,
)
run_button = gr.Button("生成", scale=0)
result = gr.Image(label="生成结果", show_label=False)
with gr.Accordion("高级选项", open=False):
with gr.Row():
use_negative_prompt = gr.Checkbox(label="使用反向提示词", value=False)
use_prompt_2 = gr.Checkbox(label="使用提示词 2", value=False)
use_negative_prompt_2 = gr.Checkbox(label="使用反向提示词 2", value=False)
negative_prompt = gr.Text(
label="反向提示词",
max_lines=1,
placeholder="输入不想在画面中出现的内容,比如:“胡子”,“人群”",
visible=False,
)
prompt_2 = gr.Text(
label="提示词 2",
max_lines=1,
placeholder="输入你的提示词",
visible=False,
negative_prompt_2 = gr.Text(
)
label="反向提示词 2",
max_lines=1,
placeholder="输入你的反向提示词",
visible=False,
)
seed = gr.Slider(
label="种子数",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="随机种子数", value=True)
with gr.Row():
width = gr.Slider(
label="宽",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=736,
)
height = gr.Slider(
label="高",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
apply_refiner = gr.Checkbox(label="增加精炼模型(refiner)", value=False, visible=ENABLE_REFINER)
with gr.Row():
guidance_scale_base = gr.Slider(
label="提示词相关性",
minimum=1,
maximum=20,
step=0.1,
value=7.5,
)
num_inference_steps_base = gr.Slider(
label="模型迭代步数",
minimum=10,
maximum=100,
step=1,
value=25,
)
with gr.Row(visible=False) as refiner_params:
guidance_scale_refiner = gr.Slider(
label="提示词相关性(refiner)",
minimum=1,
maximum=20,
step=0.1,
value=7.5,
)
num_inference_steps_refiner = gr.Slider(
label="模型迭代步数(refiner)",
minimum=10,
maximum=100,
step=1,
value=25,
)
gr.Examples(
examples=examples,
inputs=prompt,
outputs=result,
fn=generate,
cache_examples=CACHE_EXAMPLES,
)
use_negative_prompt.change(
fn=lambda x: gr.update(visible=x),
inputs=use_negative_prompt,
outputs=negative_prompt,
queue=False,
api_name=False,
)
use_prompt_2.change(
fn=lambda x: gr.update(visible=x),
inputs=use_prompt_2,
outputs=prompt_2,
queue=False,
api_name=False,
)
use_negative_prompt_2.change(
fn=lambda x: gr.update(visible=x),
inputs=use_negative_prompt_2,
outputs=negative_prompt_2,
queue=False,
api_name=False,
)
apply_refiner.change(
fn=lambda x: gr.update(visible=x),
inputs=apply_refiner,
outputs=refiner_params,
queue=False,
api_name=False,
)
gr.on(
triggers=[
prompt.submit,
negative_prompt.submit,
prompt_2.submit,
negative_prompt_2.submit,
run_button.click,
],
fn=randomize_seed_fn,
inputs=[seed, randomize_seed],
outputs=seed,
queue=False,
api_name=False,
).then(
fn=generate,
inputs=[
prompt,
negative_prompt,
prompt_2,
negative_prompt_2,
use_negative_prompt,
use_prompt_2,
use_negative_prompt_2,
seed,
width,
height,
guidance_scale_base,
guidance_scale_refiner,
num_inference_steps_base,
num_inference_steps_refiner,
apply_refiner,
],
outputs=result,
api_name="run",
)
if __name__ == "__main__":
demo.queue(max_size=30).launch()
|