File size: 15,110 Bytes
da060de
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
# -*- coding: utf-8 -*-
"""
@author:XuMing([email protected])
@description: refer https://github.com/ThilinaRajapakse/simpletransformers
"""
import json
import os
import sys
from dataclasses import asdict, dataclass, field
from multiprocessing import cpu_count
from typing import Optional

from loguru import logger
from torch.utils.data import Dataset


def get_default_process_count():
    process_count = cpu_count() - 2 if cpu_count() > 2 else 1
    if sys.platform == "win32":
        process_count = min(process_count, 61)

    return process_count


def get_special_tokens():
    return ["<s>", "<pad>", "</s>", "<unk>", "<mask>"]


@dataclass
class ModelArgs:
    adafactor_beta1: float = None
    adafactor_clip_threshold: float = 1.0
    adafactor_decay_rate: float = -0.8
    adafactor_eps: tuple = field(default_factory=lambda: (1e-30, 1e-3))
    adafactor_relative_step: bool = True
    adafactor_scale_parameter: bool = True
    adafactor_warmup_init: bool = True
    adam_epsilon: float = 1e-8
    best_model_dir: str = "outputs/best_model"
    cache_dir: str = "cache_dir/"
    config: dict = field(default_factory=dict)
    cosine_schedule_num_cycles: float = 0.5
    custom_layer_parameters: list = field(default_factory=list)
    custom_parameter_groups: list = field(default_factory=list)
    dataloader_num_workers: int = 0
    do_lower_case: bool = False
    dynamic_quantize: bool = False
    early_stopping_consider_epochs: bool = False
    early_stopping_delta: float = 0
    early_stopping_metric: str = "eval_loss"
    early_stopping_metric_minimize: bool = True
    early_stopping_patience: int = 3
    encoding: str = "utf-8"
    eval_batch_size: int = 8
    evaluate_during_training: bool = False
    evaluate_during_training_silent: bool = True
    evaluate_during_training_steps: int = 6000
    evaluate_during_training_verbose: bool = False
    evaluate_each_epoch: bool = True
    fp16: bool = False
    gradient_accumulation_steps: int = 1
    learning_rate: float = 2e-5
    local_rank: int = -1
    logging_steps: int = 50
    manual_seed: int = None
    max_grad_norm: float = 1.0
    max_seq_length: int = 128  # max length of input sequence
    model_name: str = None
    model_type: str = None
    multiprocessing_chunksize: int = -1
    n_gpu: int = 2
    no_cache: bool = False
    no_save: bool = False
    not_saved_args: list = field(default_factory=list)
    num_train_epochs: int = 1
    optimizer: str = "AdamW"
    output_dir: str = "outputs/"
    overwrite_output_dir: bool = True
    polynomial_decay_schedule_lr_end: float = 1e-7
    polynomial_decay_schedule_power: float = 1.0
    process_count: int = field(default_factory=get_default_process_count)
    quantized_model: bool = False
    reprocess_input_data: bool = False
    save_best_model: bool = True
    save_eval_checkpoints: bool = True
    save_model_every_epoch: bool = False
    save_optimizer_and_scheduler: bool = True
    save_steps: int = 10000
    scheduler: str = "linear_schedule_with_warmup"
    silent: bool = False
    skip_special_tokens: bool = True
    tensorboard_dir: str = None
    thread_count: int = None
    tokenizer_name: str = None
    tokenizer_type: str = None
    train_batch_size: int = 8
    train_custom_parameters_only: bool = False
    use_cached_eval_features: bool = False
    use_early_stopping: bool = False
    use_hf_datasets: bool = False
    use_multiprocessing: bool = True
    use_multiprocessing_for_evaluation: bool = True
    wandb_kwargs: dict = field(default_factory=dict)
    wandb_project: str = None
    warmup_ratio: float = 0.06
    warmup_steps: int = 0
    weight_decay: float = 0.0

    def update_from_dict(self, new_values):
        if isinstance(new_values, dict):
            for key, value in new_values.items():
                setattr(self, key, value)
        else:
            raise (TypeError(f"{new_values} is not a Python dict."))

    def get_args_for_saving(self):
        args_for_saving = {key: value for key, value in asdict(self).items() if key not in self.not_saved_args}
        return args_for_saving

    def save(self, output_dir):
        os.makedirs(output_dir, exist_ok=True)
        with open(os.path.join(output_dir, "model_args.json"), "w", encoding='utf-8') as f:
            args_dict = self.get_args_for_saving()
            if args_dict['dataset_class'] is not None and not isinstance(args_dict["dataset_class"], str):
                args_dict['dataset_class'] = type(args_dict['dataset_class']).__name__
            if args_dict["tokenizer_type"] is not None and not isinstance(args_dict["tokenizer_type"], str):
                args_dict["tokenizer_type"] = type(args_dict["tokenizer_type"]).__name__
            json.dump(args_dict, f)

    def load(self, input_dir):
        if input_dir:
            model_args_file = os.path.join(input_dir, "model_args.json")
            if os.path.isfile(model_args_file):
                with open(model_args_file, "r", encoding='utf-8') as f:
                    model_args = json.load(f)
                if model_args["dataset_class"]:
                    logger.warning(
                        "This model was trained using a custom dataset_class."
                        "This cannot be loaded automatically and must be specified in the model args"
                        "when loading the model."
                    )
                self.update_from_dict(model_args)


@dataclass
class T5Args(ModelArgs):
    """
    Model args for a T5Model
    """

    model_class: str = "T5Model"
    dataset_class: Dataset = None
    do_sample: bool = False
    early_stopping: bool = True
    evaluate_generated_text: bool = False
    length_penalty: float = 2.0
    max_length: int = 180  # max length of the sequence to be generated
    max_steps: int = -1
    num_beams: int = 1
    num_return_sequences: int = 1
    preprocess_inputs: bool = True
    repetition_penalty: float = 1.0
    scheduler: str = "constant_schedule_with_warmup"
    adafactor_relative_step: bool = False
    adafactor_scale_parameter: bool = False
    adafactor_warmup_init: bool = False
    learning_rate: float = 5e-4
    optimizer: str = "AdamW"
    special_tokens_list: list = field(default_factory=list)
    top_k: float = None
    top_p: float = None
    use_multiprocessed_decoding: bool = False


@dataclass
class CopyT5Args(ModelArgs):
    """
    Model args for a CopyT5Model
    """

    model_class: str = "CopyT5Model"
    dataset_class: Dataset = None
    do_sample: bool = False
    early_stopping: bool = True
    evaluate_generated_text: bool = False
    length_penalty: float = 2.0
    max_length: int = 128  # max length of the sequence to be generated
    max_steps: int = -1
    num_beams: int = 3
    num_return_sequences: int = 1
    preprocess_inputs: bool = True
    repetition_penalty: float = 1.0
    scheduler: str = "linear_schedule_with_warmup"
    adafactor_relative_step: bool = False
    adafactor_scale_parameter: bool = False
    adafactor_warmup_init: bool = False
    learning_rate: float = 1e-3
    optimizer: str = "AdamW"
    special_tokens_list: list = field(default_factory=list)
    top_k: float = None
    top_p: float = None
    use_multiprocessed_decoding: bool = False


@dataclass
class LanguageModelingArgs(ModelArgs):
    """
    Model args for a LanguageModelingModel
    """

    model_class: str = "LanguageModelingModel"
    block_size: int = -1
    config_name: str = None
    dataset_class: Dataset = None
    dataset_type: str = "None"
    discriminator_config: dict = field(default_factory=dict)
    discriminator_loss_weight: float = 50.0
    generator_config: dict = field(default_factory=dict)
    max_steps: int = -1
    min_frequency: int = 2
    mlm: bool = True
    mlm_probability: float = 0.15
    sliding_window: bool = False
    special_tokens: list = field(default_factory=get_special_tokens)
    stride: float = 0.8
    tie_generator_and_discriminator_embeddings: bool = True
    tokenizer_name: str = None
    vocab_size: int = None
    clean_text: bool = True
    handle_chinese_chars: bool = True
    special_tokens_list: list = field(default_factory=list)
    strip_accents: bool = True
    local_rank: int = -1


@dataclass
class Seq2SeqArgs(ModelArgs):
    """
    Model args for a Seq2SeqModel
    """

    model_class: str = "Seq2SeqModel"
    base_marian_model_name: str = None
    dataset_class: Dataset = None
    do_sample: bool = False
    early_stopping: bool = True
    evaluate_generated_text: bool = False
    faiss_d: int = 768
    faiss_m: int = 128
    length_penalty: float = 2.0
    max_length: int = 128  # max length of the sequence to be generated
    max_steps: int = -1
    num_beams: int = 1
    num_return_sequences: int = 1
    rag_embed_batch_size: int = 16
    repetition_penalty: float = 1.0
    top_k: float = None
    top_p: float = None
    use_multiprocessed_decoding: bool = False
    save_knowledge_dataset: bool = True
    save_knowledge_dataset_with_checkpoints: bool = False
    split_text_character: str = " "
    split_text_n: int = 100
    src_lang: str = "en_XX"
    tgt_lang: str = "ro_RO"


@dataclass
class LanguageGenerationArgs(ModelArgs):
    """
    Model args for a LanguageGenerationModel
    """

    model_class: str = "LanguageGenerationModel"
    do_sample: bool = True
    early_stopping: bool = True
    evaluate_generated_text: bool = False
    length_penalty: float = 2.0
    max_length: int = 128  # max length of the sequence to be generated
    max_steps: int = -1
    num_beams: int = 1
    num_return_sequences: int = 1
    repetition_penalty: float = 1.0
    top_k: float = 50
    top_p: float = 0.95
    prompt: str = ""
    stop_token: str = None
    temperature: float = 1.0
    padding_text: str = ""
    xlm_language: str = ""
    config_name: str = None
    tokenizer_name: str = None
    special_tokens_list: list = field(default_factory=list)


@dataclass
class SongNetArgs(LanguageModelingArgs):
    """
    Model args for a SongNetModel
    """

    model_class: str = "SongNetModel"
    dataset_class: Dataset = None
    do_sample: bool = False
    early_stopping: bool = True
    evaluate_generated_text: bool = False
    length_penalty: float = 2.0
    max_length: int = 128
    min_length: int = 10
    max_steps: int = -1
    num_beams: int = 3
    num_return_sequences: int = 1
    repetition_penalty: float = 1.0
    scheduler: str = None
    adafactor_relative_step: bool = False
    adafactor_scale_parameter: bool = False
    adafactor_warmup_init: bool = False
    learning_rate: float = 1e-3
    early_stopping_metric: str = "eval_ppl"
    special_tokens_list: list = field(default_factory=list)
    save_eval_checkpoints: bool = False
    skip_special_tokens: bool = False
    k: int = 16
    use_multiprocessed_decoding: bool = False
    embed_dim: int = 768
    ff_embed_dim: int = 3072
    num_heads: int = 12
    num_layers: int = 12
    dropout: float = 0.2
    warmup_ratio: float = 0.05
    weight_decay: float = 0.0
    smoothing_factor: float = 0.1


@dataclass
class ChatGlmArgs(ModelArgs):
    """
    Model args for a ChatGLMModel
    """

    model_class: str = "ChatGlmArgs"
    dataset_class: Dataset = None
    learning_rate: float = 2e-5
    fp16: bool = True
    bf16: bool = False
    int8: bool = False
    int4: bool = False
    debug: bool = False
    max_seq_length: int = 256  # max length of input sequence
    max_length = 384  # max length of the sequence to be generated
    do_sample: bool = True
    early_stopping: bool = True
    is_train_on_prompt: bool = False  # if compute loss with prompt labels
    evaluate_generated_text: bool = True
    report_to = "tensorboard"
    optimizer: str = "adamw_torch"
    save_strategy: str = "steps"
    evaluation_strategy: str = "no"
    eval_steps: int = 50
    save_steps: int = 400
    max_eval_samples: int = 20
    length_penalty: float = 2.0
    num_beams: int = 4
    num_return_sequences: int = 1
    repetition_penalty: float = 1.0
    temperature: float = 0.1
    special_tokens_list: list = field(default_factory=list)
    top_k: float = 40
    top_p: float = 0.75
    model_name_or_path: Optional[str] = field(default="THUDM/chatglm-6b")
    use_peft: bool = True
    peft_type: str = "LORA"
    peft_bin_name: str = "adapter_model.bin"
    lora_r: int = 8
    lora_alpha = 32
    lora_dropout = 0.05
    lora_target_modules = ["all"]  # ["all"] or ["query_key_value"]
    lora_bias = "none"
    adalora_init_r: int = 12
    adalora_tinit: int = 200
    adalora_tfinal: int = 1000
    adalora_delta_t: int = 10
    lora_beta: float = 0.85
    num_virtual_tokens: int = 20
    prompt_encoder_hidden_size: int = 128
    num_train_epochs = 1
    max_steps = -1
    per_device_train_batch_size = 2
    eval_batch_size: int = 4
    gradient_accumulation_steps = 1
    gradient_checkpointing: bool = True
    torch_compile: bool = False
    save_total_limit = 10
    remove_unused_columns = False
    logging_steps = 50
    resume_from_checkpoint: str = None
    qlora: bool = False


@dataclass
class GptArgs(ModelArgs):
    """
    Model args for a GptModel
    """

    model_class: str = "GptArgs"
    dataset_class: Dataset = None
    learning_rate: float = 2e-5
    fp16: bool = True
    bf16: bool = False
    int8: bool = False
    int4: bool = False
    debug: bool = False
    max_seq_length: int = 256  # max length of input sequence
    max_length = 256  # max length of the sequence to be generated
    do_sample: bool = True
    early_stopping: bool = True
    evaluate_generated_text: bool = True
    is_train_on_prompt: bool = False  # if compute loss with prompt labels
    warmup_steps: int = 50
    report_to = "tensorboard"
    optimizer: str = "adamw_torch"
    save_strategy: str = "steps"
    eval_steps: int = 200
    save_steps: int = 400
    pad_to_multiple_of: int = 8
    max_eval_samples: int = 20
    length_penalty: float = 2.0
    num_beams: int = 1
    num_return_sequences: int = 1
    repetition_penalty: float = 1.3
    temperature: float = 0.4
    special_tokens_list: list = field(default_factory=list)
    top_k: float = 40
    top_p: float = 0.9
    model_name_or_path: Optional[str] = field(default="shibing624/chinese-alpaca-plus-7b-hf")
    use_peft: bool = True
    peft_type: str = "LORA"
    peft_bin_name: str = "adapter_model.bin"
    lora_r: int = 8
    lora_alpha = 16
    lora_dropout = 0.05
    lora_target_modules = ["all"]  # ["all"] or ["k_proj"]
    lora_bias = "none"
    adalora_init_r: int = 12
    adalora_tinit: int = 200
    adalora_tfinal: int = 1000
    adalora_delta_t: int = 10
    lora_beta: float = 0.85
    num_virtual_tokens: int = 20
    prompt_encoder_hidden_size: int = 128
    num_train_epochs = 3
    max_steps = -1
    per_device_train_batch_size = 2
    eval_batch_size: int = 4
    gradient_accumulation_steps = 1
    save_total_limit = 10
    remove_unused_columns = False
    logging_steps = 50
    resume_from_checkpoint: str = None
    gradient_checkpointing: bool = True
    torch_compile: bool = False
    trust_remote_code: bool = True
    qlora: bool = False