CloudAnts's picture
my
32652fd
raw
history blame
16.8 kB
use anyhow::Result;
use clap::ValueEnum;
use half::f16;
use ndarray::{Array, CowArray, IxDyn};
use ort::execution_providers::{CUDAExecutionProviderOptions, TensorRTExecutionProviderOptions};
use ort::tensor::TensorElementDataType;
use ort::{Environment, ExecutionProvider, Session, SessionBuilder, Value};
use regex::Regex;
#[derive(Debug, Clone, PartialEq, Eq, PartialOrd, Ord, ValueEnum)]
pub enum YOLOTask {
// YOLO tasks
Classify,
Detect,
Pose,
Segment,
}
#[derive(Debug, Clone, PartialEq, Eq, PartialOrd, Ord)]
pub enum OrtEP {
// ONNXRuntime execution provider
Cpu,
Cuda(u32),
Trt(u32),
}
#[derive(Debug)]
pub struct Batch {
pub opt: u32,
pub min: u32,
pub max: u32,
}
impl Default for Batch {
fn default() -> Self {
Self {
opt: 1,
min: 1,
max: 1,
}
}
}
#[derive(Debug, Default)]
pub struct OrtInputs {
// ONNX model inputs attrs
pub shapes: Vec<Vec<i32>>,
pub dtypes: Vec<TensorElementDataType>,
pub names: Vec<String>,
pub sizes: Vec<Vec<u32>>,
}
impl OrtInputs {
pub fn new(session: &Session) -> Self {
let mut shapes = Vec::new();
let mut dtypes = Vec::new();
let mut names = Vec::new();
for i in session.inputs.iter() {
let shape: Vec<i32> = i
.dimensions()
.map(|x| if let Some(x) = x { x as i32 } else { -1i32 })
.collect();
shapes.push(shape);
dtypes.push(i.input_type);
names.push(i.name.clone());
}
Self {
shapes,
dtypes,
names,
..Default::default()
}
}
}
#[derive(Debug)]
pub struct OrtConfig {
// ORT config
pub f: String,
pub task: Option<YOLOTask>,
pub ep: OrtEP,
pub trt_fp16: bool,
pub batch: Batch,
pub image_size: (Option<u32>, Option<u32>),
}
#[derive(Debug)]
pub struct OrtBackend {
// ORT engine
session: Session,
task: YOLOTask,
ep: OrtEP,
batch: Batch,
inputs: OrtInputs,
}
impl OrtBackend {
pub fn build(args: OrtConfig) -> Result<Self> {
// build env & session
let env = Environment::builder()
.with_name("YOLOv8")
.with_log_level(ort::LoggingLevel::Verbose)
.build()?
.into_arc();
let session = SessionBuilder::new(&env)?.with_model_from_file(&args.f)?;
// get inputs
let mut inputs = OrtInputs::new(&session);
// batch size
let mut batch = args.batch;
let batch = if inputs.shapes[0][0] == -1 {
batch
} else {
assert_eq!(
inputs.shapes[0][0] as u32, batch.opt,
"Expected batch size: {}, got {}. Try using `--batch {}`.",
inputs.shapes[0][0] as u32, batch.opt, inputs.shapes[0][0] as u32
);
batch.opt = inputs.shapes[0][0] as u32;
batch
};
// input size: height and width
let height = if inputs.shapes[0][2] == -1 {
match args.image_size.0 {
Some(height) => height,
None => panic!("Failed to get model height. Make it explicit with `--height`"),
}
} else {
inputs.shapes[0][2] as u32
};
let width = if inputs.shapes[0][3] == -1 {
match args.image_size.1 {
Some(width) => width,
None => panic!("Failed to get model width. Make it explicit with `--width`"),
}
} else {
inputs.shapes[0][3] as u32
};
inputs.sizes.push(vec![height, width]);
// build provider
let (ep, provider) = match args.ep {
OrtEP::Cuda(device_id) => Self::set_ep_cuda(device_id),
OrtEP::Trt(device_id) => Self::set_ep_trt(device_id, args.trt_fp16, &batch, &inputs),
_ => (OrtEP::Cpu, ExecutionProvider::CPU(Default::default())),
};
// build session again with the new provider
let session = SessionBuilder::new(&env)?
// .with_optimization_level(ort::GraphOptimizationLevel::Level3)?
.with_execution_providers([provider])?
.with_model_from_file(args.f)?;
// task: using given one or guessing
let task = match args.task {
Some(task) => task,
None => match session.metadata() {
Err(_) => panic!("No metadata found. Try making it explicit by `--task`"),
Ok(metadata) => match metadata.custom("task") {
Err(_) => panic!("Can not get custom value. Try making it explicit by `--task`"),
Ok(value) => match value {
None => panic!("No correspoing value of `task` found in metadata. Make it explicit by `--task`"),
Some(task) => match task.as_str() {
"classify" => YOLOTask::Classify,
"detect" => YOLOTask::Detect,
"pose" => YOLOTask::Pose,
"segment" => YOLOTask::Segment,
x => todo!("{:?} is not supported for now!", x),
},
},
},
},
};
Ok(Self {
session,
task,
ep,
batch,
inputs,
})
}
pub fn fetch_inputs_from_session(
session: &Session,
) -> (Vec<Vec<i32>>, Vec<TensorElementDataType>, Vec<String>) {
// get inputs attrs from ONNX model
let mut shapes = Vec::new();
let mut dtypes = Vec::new();
let mut names = Vec::new();
for i in session.inputs.iter() {
let shape: Vec<i32> = i
.dimensions()
.map(|x| if let Some(x) = x { x as i32 } else { -1i32 })
.collect();
shapes.push(shape);
dtypes.push(i.input_type);
names.push(i.name.clone());
}
(shapes, dtypes, names)
}
pub fn set_ep_cuda(device_id: u32) -> (OrtEP, ExecutionProvider) {
// set CUDA
if ExecutionProvider::CUDA(Default::default()).is_available() {
(
OrtEP::Cuda(device_id),
ExecutionProvider::CUDA(CUDAExecutionProviderOptions {
device_id,
..Default::default()
}),
)
} else {
println!("> CUDA is not available! Using CPU.");
(OrtEP::Cpu, ExecutionProvider::CPU(Default::default()))
}
}
pub fn set_ep_trt(
device_id: u32,
fp16: bool,
batch: &Batch,
inputs: &OrtInputs,
) -> (OrtEP, ExecutionProvider) {
// set TensorRT
if ExecutionProvider::TensorRT(Default::default()).is_available() {
let (height, width) = (inputs.sizes[0][0], inputs.sizes[0][1]);
// dtype match checking
if inputs.dtypes[0] == TensorElementDataType::Float16 && !fp16 {
panic!(
"Dtype mismatch! Expected: Float32, got: {:?}. You should use `--fp16`",
inputs.dtypes[0]
);
}
// dynamic shape: input_tensor_1:dim_1xdim_2x...,input_tensor_2:dim_3xdim_4x...,...
let mut opt_string = String::new();
let mut min_string = String::new();
let mut max_string = String::new();
for name in inputs.names.iter() {
let s_opt = format!("{}:{}x3x{}x{},", name, batch.opt, height, width);
let s_min = format!("{}:{}x3x{}x{},", name, batch.min, height, width);
let s_max = format!("{}:{}x3x{}x{},", name, batch.max, height, width);
opt_string.push_str(s_opt.as_str());
min_string.push_str(s_min.as_str());
max_string.push_str(s_max.as_str());
}
let _ = opt_string.pop();
let _ = min_string.pop();
let _ = max_string.pop();
(
OrtEP::Trt(device_id),
ExecutionProvider::TensorRT(TensorRTExecutionProviderOptions {
device_id,
fp16_enable: fp16,
timing_cache_enable: true,
profile_min_shapes: min_string,
profile_max_shapes: max_string,
profile_opt_shapes: opt_string,
..Default::default()
}),
)
} else {
println!("> TensorRT is not available! Try using CUDA...");
Self::set_ep_cuda(device_id)
}
}
pub fn fetch_from_metadata(&self, key: &str) -> Option<String> {
// fetch value from onnx model file by key
match self.session.metadata() {
Err(_) => None,
Ok(metadata) => match metadata.custom(key) {
Err(_) => None,
Ok(value) => value,
},
}
}
pub fn run(&self, xs: Array<f32, IxDyn>, profile: bool) -> Result<Vec<Array<f32, IxDyn>>> {
// ORT inference
match self.dtype() {
TensorElementDataType::Float16 => self.run_fp16(xs, profile),
TensorElementDataType::Float32 => self.run_fp32(xs, profile),
_ => todo!(),
}
}
pub fn run_fp16(&self, xs: Array<f32, IxDyn>, profile: bool) -> Result<Vec<Array<f32, IxDyn>>> {
// f32->f16
let t = std::time::Instant::now();
let xs = xs.mapv(f16::from_f32);
if profile {
println!("[ORT f32->f16]: {:?}", t.elapsed());
}
// h2d
let t = std::time::Instant::now();
let xs = CowArray::from(xs);
let xs = vec![Value::from_array(self.session.allocator(), &xs)?];
if profile {
println!("[ORT H2D]: {:?}", t.elapsed());
}
// run
let t = std::time::Instant::now();
let ys = self.session.run(xs)?;
if profile {
println!("[ORT Inference]: {:?}", t.elapsed());
}
// d2h
Ok(ys
.iter()
.map(|x| {
// d2h
let t = std::time::Instant::now();
let x = x.try_extract::<_>().unwrap().view().clone().into_owned();
if profile {
println!("[ORT D2H]: {:?}", t.elapsed());
}
// f16->f32
let t_ = std::time::Instant::now();
let x = x.mapv(f16::to_f32);
if profile {
println!("[ORT f16->f32]: {:?}", t_.elapsed());
}
x
})
.collect::<Vec<Array<_, _>>>())
}
pub fn run_fp32(&self, xs: Array<f32, IxDyn>, profile: bool) -> Result<Vec<Array<f32, IxDyn>>> {
// h2d
let t = std::time::Instant::now();
let xs = CowArray::from(xs);
let xs = vec![Value::from_array(self.session.allocator(), &xs)?];
if profile {
println!("[ORT H2D]: {:?}", t.elapsed());
}
// run
let t = std::time::Instant::now();
let ys = self.session.run(xs)?;
if profile {
println!("[ORT Inference]: {:?}", t.elapsed());
}
// d2h
Ok(ys
.iter()
.map(|x| {
let t = std::time::Instant::now();
let x = x.try_extract::<_>().unwrap().view().clone().into_owned();
if profile {
println!("[ORT D2H]: {:?}", t.elapsed());
}
x
})
.collect::<Vec<Array<_, _>>>())
}
pub fn output_shapes(&self) -> Vec<Vec<i32>> {
let mut shapes = Vec::new();
for o in &self.session.outputs {
let shape: Vec<_> = o
.dimensions()
.map(|x| if let Some(x) = x { x as i32 } else { -1i32 })
.collect();
shapes.push(shape);
}
shapes
}
pub fn output_dtypes(&self) -> Vec<TensorElementDataType> {
let mut dtypes = Vec::new();
self.session
.outputs
.iter()
.for_each(|x| dtypes.push(x.output_type));
dtypes
}
pub fn input_shapes(&self) -> &Vec<Vec<i32>> {
&self.inputs.shapes
}
pub fn input_names(&self) -> &Vec<String> {
&self.inputs.names
}
pub fn input_dtypes(&self) -> &Vec<TensorElementDataType> {
&self.inputs.dtypes
}
pub fn dtype(&self) -> TensorElementDataType {
self.input_dtypes()[0]
}
pub fn height(&self) -> u32 {
self.inputs.sizes[0][0]
}
pub fn width(&self) -> u32 {
self.inputs.sizes[0][1]
}
pub fn is_height_dynamic(&self) -> bool {
self.input_shapes()[0][2] == -1
}
pub fn is_width_dynamic(&self) -> bool {
self.input_shapes()[0][3] == -1
}
pub fn batch(&self) -> u32 {
self.batch.opt
}
pub fn is_batch_dynamic(&self) -> bool {
self.input_shapes()[0][0] == -1
}
pub fn ep(&self) -> &OrtEP {
&self.ep
}
pub fn task(&self) -> YOLOTask {
self.task.clone()
}
pub fn names(&self) -> Option<Vec<String>> {
// class names, metadata parsing
// String format: `{0: 'person', 1: 'bicycle', 2: 'sports ball', ..., 27: "yellow_lady's_slipper"}`
match self.fetch_from_metadata("names") {
Some(names) => {
let re = Regex::new(r#"(['"])([-()\w '"]+)(['"])"#).unwrap();
let mut names_ = vec![];
for (_, [_, name, _]) in re.captures_iter(&names).map(|x| x.extract()) {
names_.push(name.to_string());
}
Some(names_)
}
None => None,
}
}
pub fn nk(&self) -> Option<u32> {
// num_keypoints, metadata parsing: String `nk` in onnx model: `[17, 3]`
match self.fetch_from_metadata("kpt_shape") {
None => None,
Some(kpt_string) => {
let re = Regex::new(r"([0-9]+), ([0-9]+)").unwrap();
let caps = re.captures(&kpt_string).unwrap();
Some(caps.get(1).unwrap().as_str().parse::<u32>().unwrap())
}
}
}
pub fn nc(&self) -> Option<u32> {
// num_classes
match self.names() {
// by names
Some(names) => Some(names.len() as u32),
None => match self.task() {
// by task calculation
YOLOTask::Classify => Some(self.output_shapes()[0][1] as u32),
YOLOTask::Detect => {
if self.output_shapes()[0][1] == -1 {
None
} else {
// cxywhclss
Some(self.output_shapes()[0][1] as u32 - 4)
}
}
YOLOTask::Pose => {
match self.nk() {
None => None,
Some(nk) => {
if self.output_shapes()[0][1] == -1 {
None
} else {
// cxywhclss3*kpt
Some(self.output_shapes()[0][1] as u32 - 4 - 3 * nk)
}
}
}
}
YOLOTask::Segment => {
if self.output_shapes()[0][1] == -1 {
None
} else {
// cxywhclssnm
Some((self.output_shapes()[0][1] - self.output_shapes()[1][1]) as u32 - 4)
}
}
},
}
}
pub fn nm(&self) -> Option<u32> {
// num_masks
match self.task() {
YOLOTask::Segment => Some(self.output_shapes()[1][1] as u32),
_ => None,
}
}
pub fn na(&self) -> Option<u32> {
// num_anchors
match self.task() {
YOLOTask::Segment | YOLOTask::Detect | YOLOTask::Pose => {
if self.output_shapes()[0][2] == -1 {
None
} else {
Some(self.output_shapes()[0][2] as u32)
}
}
_ => None,
}
}
pub fn author(&self) -> Option<String> {
self.fetch_from_metadata("author")
}
pub fn version(&self) -> Option<String> {
self.fetch_from_metadata("version")
}
}