|
use anyhow::Result; |
|
use clap::ValueEnum; |
|
use half::f16; |
|
use ndarray::{Array, CowArray, IxDyn}; |
|
use ort::execution_providers::{CUDAExecutionProviderOptions, TensorRTExecutionProviderOptions}; |
|
use ort::tensor::TensorElementDataType; |
|
use ort::{Environment, ExecutionProvider, Session, SessionBuilder, Value}; |
|
use regex::Regex; |
|
|
|
#[derive(Debug, Clone, PartialEq, Eq, PartialOrd, Ord, ValueEnum)] |
|
pub enum YOLOTask { |
|
|
|
Classify, |
|
Detect, |
|
Pose, |
|
Segment, |
|
} |
|
|
|
#[derive(Debug, Clone, PartialEq, Eq, PartialOrd, Ord)] |
|
pub enum OrtEP { |
|
|
|
Cpu, |
|
Cuda(u32), |
|
Trt(u32), |
|
} |
|
|
|
#[derive(Debug)] |
|
pub struct Batch { |
|
pub opt: u32, |
|
pub min: u32, |
|
pub max: u32, |
|
} |
|
|
|
impl Default for Batch { |
|
fn default() -> Self { |
|
Self { |
|
opt: 1, |
|
min: 1, |
|
max: 1, |
|
} |
|
} |
|
} |
|
|
|
#[derive(Debug, Default)] |
|
pub struct OrtInputs { |
|
|
|
pub shapes: Vec<Vec<i32>>, |
|
pub dtypes: Vec<TensorElementDataType>, |
|
pub names: Vec<String>, |
|
pub sizes: Vec<Vec<u32>>, |
|
} |
|
|
|
impl OrtInputs { |
|
pub fn new(session: &Session) -> Self { |
|
let mut shapes = Vec::new(); |
|
let mut dtypes = Vec::new(); |
|
let mut names = Vec::new(); |
|
for i in session.inputs.iter() { |
|
let shape: Vec<i32> = i |
|
.dimensions() |
|
.map(|x| if let Some(x) = x { x as i32 } else { -1i32 }) |
|
.collect(); |
|
shapes.push(shape); |
|
dtypes.push(i.input_type); |
|
names.push(i.name.clone()); |
|
} |
|
Self { |
|
shapes, |
|
dtypes, |
|
names, |
|
..Default::default() |
|
} |
|
} |
|
} |
|
|
|
#[derive(Debug)] |
|
pub struct OrtConfig { |
|
|
|
pub f: String, |
|
pub task: Option<YOLOTask>, |
|
pub ep: OrtEP, |
|
pub trt_fp16: bool, |
|
pub batch: Batch, |
|
pub image_size: (Option<u32>, Option<u32>), |
|
} |
|
|
|
#[derive(Debug)] |
|
pub struct OrtBackend { |
|
|
|
session: Session, |
|
task: YOLOTask, |
|
ep: OrtEP, |
|
batch: Batch, |
|
inputs: OrtInputs, |
|
} |
|
|
|
impl OrtBackend { |
|
pub fn build(args: OrtConfig) -> Result<Self> { |
|
|
|
let env = Environment::builder() |
|
.with_name("YOLOv8") |
|
.with_log_level(ort::LoggingLevel::Verbose) |
|
.build()? |
|
.into_arc(); |
|
let session = SessionBuilder::new(&env)?.with_model_from_file(&args.f)?; |
|
|
|
|
|
let mut inputs = OrtInputs::new(&session); |
|
|
|
|
|
let mut batch = args.batch; |
|
let batch = if inputs.shapes[0][0] == -1 { |
|
batch |
|
} else { |
|
assert_eq!( |
|
inputs.shapes[0][0] as u32, batch.opt, |
|
"Expected batch size: {}, got {}. Try using `--batch {}`.", |
|
inputs.shapes[0][0] as u32, batch.opt, inputs.shapes[0][0] as u32 |
|
); |
|
batch.opt = inputs.shapes[0][0] as u32; |
|
batch |
|
}; |
|
|
|
|
|
let height = if inputs.shapes[0][2] == -1 { |
|
match args.image_size.0 { |
|
Some(height) => height, |
|
None => panic!("Failed to get model height. Make it explicit with `--height`"), |
|
} |
|
} else { |
|
inputs.shapes[0][2] as u32 |
|
}; |
|
let width = if inputs.shapes[0][3] == -1 { |
|
match args.image_size.1 { |
|
Some(width) => width, |
|
None => panic!("Failed to get model width. Make it explicit with `--width`"), |
|
} |
|
} else { |
|
inputs.shapes[0][3] as u32 |
|
}; |
|
inputs.sizes.push(vec![height, width]); |
|
|
|
|
|
let (ep, provider) = match args.ep { |
|
OrtEP::Cuda(device_id) => Self::set_ep_cuda(device_id), |
|
OrtEP::Trt(device_id) => Self::set_ep_trt(device_id, args.trt_fp16, &batch, &inputs), |
|
_ => (OrtEP::Cpu, ExecutionProvider::CPU(Default::default())), |
|
}; |
|
|
|
|
|
let session = SessionBuilder::new(&env)? |
|
|
|
.with_execution_providers([provider])? |
|
.with_model_from_file(args.f)?; |
|
|
|
|
|
let task = match args.task { |
|
Some(task) => task, |
|
None => match session.metadata() { |
|
Err(_) => panic!("No metadata found. Try making it explicit by `--task`"), |
|
Ok(metadata) => match metadata.custom("task") { |
|
Err(_) => panic!("Can not get custom value. Try making it explicit by `--task`"), |
|
Ok(value) => match value { |
|
None => panic!("No correspoing value of `task` found in metadata. Make it explicit by `--task`"), |
|
Some(task) => match task.as_str() { |
|
"classify" => YOLOTask::Classify, |
|
"detect" => YOLOTask::Detect, |
|
"pose" => YOLOTask::Pose, |
|
"segment" => YOLOTask::Segment, |
|
x => todo!("{:?} is not supported for now!", x), |
|
}, |
|
}, |
|
}, |
|
}, |
|
}; |
|
|
|
Ok(Self { |
|
session, |
|
task, |
|
ep, |
|
batch, |
|
inputs, |
|
}) |
|
} |
|
|
|
pub fn fetch_inputs_from_session( |
|
session: &Session, |
|
) -> (Vec<Vec<i32>>, Vec<TensorElementDataType>, Vec<String>) { |
|
|
|
let mut shapes = Vec::new(); |
|
let mut dtypes = Vec::new(); |
|
let mut names = Vec::new(); |
|
for i in session.inputs.iter() { |
|
let shape: Vec<i32> = i |
|
.dimensions() |
|
.map(|x| if let Some(x) = x { x as i32 } else { -1i32 }) |
|
.collect(); |
|
shapes.push(shape); |
|
dtypes.push(i.input_type); |
|
names.push(i.name.clone()); |
|
} |
|
(shapes, dtypes, names) |
|
} |
|
|
|
pub fn set_ep_cuda(device_id: u32) -> (OrtEP, ExecutionProvider) { |
|
|
|
if ExecutionProvider::CUDA(Default::default()).is_available() { |
|
( |
|
OrtEP::Cuda(device_id), |
|
ExecutionProvider::CUDA(CUDAExecutionProviderOptions { |
|
device_id, |
|
..Default::default() |
|
}), |
|
) |
|
} else { |
|
println!("> CUDA is not available! Using CPU."); |
|
(OrtEP::Cpu, ExecutionProvider::CPU(Default::default())) |
|
} |
|
} |
|
|
|
pub fn set_ep_trt( |
|
device_id: u32, |
|
fp16: bool, |
|
batch: &Batch, |
|
inputs: &OrtInputs, |
|
) -> (OrtEP, ExecutionProvider) { |
|
|
|
if ExecutionProvider::TensorRT(Default::default()).is_available() { |
|
let (height, width) = (inputs.sizes[0][0], inputs.sizes[0][1]); |
|
|
|
|
|
if inputs.dtypes[0] == TensorElementDataType::Float16 && !fp16 { |
|
panic!( |
|
"Dtype mismatch! Expected: Float32, got: {:?}. You should use `--fp16`", |
|
inputs.dtypes[0] |
|
); |
|
} |
|
|
|
|
|
let mut opt_string = String::new(); |
|
let mut min_string = String::new(); |
|
let mut max_string = String::new(); |
|
for name in inputs.names.iter() { |
|
let s_opt = format!("{}:{}x3x{}x{},", name, batch.opt, height, width); |
|
let s_min = format!("{}:{}x3x{}x{},", name, batch.min, height, width); |
|
let s_max = format!("{}:{}x3x{}x{},", name, batch.max, height, width); |
|
opt_string.push_str(s_opt.as_str()); |
|
min_string.push_str(s_min.as_str()); |
|
max_string.push_str(s_max.as_str()); |
|
} |
|
let _ = opt_string.pop(); |
|
let _ = min_string.pop(); |
|
let _ = max_string.pop(); |
|
( |
|
OrtEP::Trt(device_id), |
|
ExecutionProvider::TensorRT(TensorRTExecutionProviderOptions { |
|
device_id, |
|
fp16_enable: fp16, |
|
timing_cache_enable: true, |
|
profile_min_shapes: min_string, |
|
profile_max_shapes: max_string, |
|
profile_opt_shapes: opt_string, |
|
..Default::default() |
|
}), |
|
) |
|
} else { |
|
println!("> TensorRT is not available! Try using CUDA..."); |
|
Self::set_ep_cuda(device_id) |
|
} |
|
} |
|
|
|
pub fn fetch_from_metadata(&self, key: &str) -> Option<String> { |
|
|
|
match self.session.metadata() { |
|
Err(_) => None, |
|
Ok(metadata) => match metadata.custom(key) { |
|
Err(_) => None, |
|
Ok(value) => value, |
|
}, |
|
} |
|
} |
|
|
|
pub fn run(&self, xs: Array<f32, IxDyn>, profile: bool) -> Result<Vec<Array<f32, IxDyn>>> { |
|
|
|
match self.dtype() { |
|
TensorElementDataType::Float16 => self.run_fp16(xs, profile), |
|
TensorElementDataType::Float32 => self.run_fp32(xs, profile), |
|
_ => todo!(), |
|
} |
|
} |
|
|
|
pub fn run_fp16(&self, xs: Array<f32, IxDyn>, profile: bool) -> Result<Vec<Array<f32, IxDyn>>> { |
|
|
|
let t = std::time::Instant::now(); |
|
let xs = xs.mapv(f16::from_f32); |
|
if profile { |
|
println!("[ORT f32->f16]: {:?}", t.elapsed()); |
|
} |
|
|
|
|
|
let t = std::time::Instant::now(); |
|
let xs = CowArray::from(xs); |
|
let xs = vec![Value::from_array(self.session.allocator(), &xs)?]; |
|
if profile { |
|
println!("[ORT H2D]: {:?}", t.elapsed()); |
|
} |
|
|
|
|
|
let t = std::time::Instant::now(); |
|
let ys = self.session.run(xs)?; |
|
if profile { |
|
println!("[ORT Inference]: {:?}", t.elapsed()); |
|
} |
|
|
|
|
|
Ok(ys |
|
.iter() |
|
.map(|x| { |
|
|
|
let t = std::time::Instant::now(); |
|
let x = x.try_extract::<_>().unwrap().view().clone().into_owned(); |
|
if profile { |
|
println!("[ORT D2H]: {:?}", t.elapsed()); |
|
} |
|
|
|
|
|
let t_ = std::time::Instant::now(); |
|
let x = x.mapv(f16::to_f32); |
|
if profile { |
|
println!("[ORT f16->f32]: {:?}", t_.elapsed()); |
|
} |
|
x |
|
}) |
|
.collect::<Vec<Array<_, _>>>()) |
|
} |
|
|
|
pub fn run_fp32(&self, xs: Array<f32, IxDyn>, profile: bool) -> Result<Vec<Array<f32, IxDyn>>> { |
|
|
|
let t = std::time::Instant::now(); |
|
let xs = CowArray::from(xs); |
|
let xs = vec![Value::from_array(self.session.allocator(), &xs)?]; |
|
if profile { |
|
println!("[ORT H2D]: {:?}", t.elapsed()); |
|
} |
|
|
|
|
|
let t = std::time::Instant::now(); |
|
let ys = self.session.run(xs)?; |
|
if profile { |
|
println!("[ORT Inference]: {:?}", t.elapsed()); |
|
} |
|
|
|
|
|
Ok(ys |
|
.iter() |
|
.map(|x| { |
|
let t = std::time::Instant::now(); |
|
let x = x.try_extract::<_>().unwrap().view().clone().into_owned(); |
|
if profile { |
|
println!("[ORT D2H]: {:?}", t.elapsed()); |
|
} |
|
x |
|
}) |
|
.collect::<Vec<Array<_, _>>>()) |
|
} |
|
|
|
pub fn output_shapes(&self) -> Vec<Vec<i32>> { |
|
let mut shapes = Vec::new(); |
|
for o in &self.session.outputs { |
|
let shape: Vec<_> = o |
|
.dimensions() |
|
.map(|x| if let Some(x) = x { x as i32 } else { -1i32 }) |
|
.collect(); |
|
shapes.push(shape); |
|
} |
|
shapes |
|
} |
|
|
|
pub fn output_dtypes(&self) -> Vec<TensorElementDataType> { |
|
let mut dtypes = Vec::new(); |
|
self.session |
|
.outputs |
|
.iter() |
|
.for_each(|x| dtypes.push(x.output_type)); |
|
dtypes |
|
} |
|
|
|
pub fn input_shapes(&self) -> &Vec<Vec<i32>> { |
|
&self.inputs.shapes |
|
} |
|
|
|
pub fn input_names(&self) -> &Vec<String> { |
|
&self.inputs.names |
|
} |
|
|
|
pub fn input_dtypes(&self) -> &Vec<TensorElementDataType> { |
|
&self.inputs.dtypes |
|
} |
|
|
|
pub fn dtype(&self) -> TensorElementDataType { |
|
self.input_dtypes()[0] |
|
} |
|
|
|
pub fn height(&self) -> u32 { |
|
self.inputs.sizes[0][0] |
|
} |
|
|
|
pub fn width(&self) -> u32 { |
|
self.inputs.sizes[0][1] |
|
} |
|
|
|
pub fn is_height_dynamic(&self) -> bool { |
|
self.input_shapes()[0][2] == -1 |
|
} |
|
|
|
pub fn is_width_dynamic(&self) -> bool { |
|
self.input_shapes()[0][3] == -1 |
|
} |
|
|
|
pub fn batch(&self) -> u32 { |
|
self.batch.opt |
|
} |
|
|
|
pub fn is_batch_dynamic(&self) -> bool { |
|
self.input_shapes()[0][0] == -1 |
|
} |
|
|
|
pub fn ep(&self) -> &OrtEP { |
|
&self.ep |
|
} |
|
|
|
pub fn task(&self) -> YOLOTask { |
|
self.task.clone() |
|
} |
|
|
|
pub fn names(&self) -> Option<Vec<String>> { |
|
|
|
|
|
match self.fetch_from_metadata("names") { |
|
Some(names) => { |
|
let re = Regex::new(r#"(['"])([-()\w '"]+)(['"])"#).unwrap(); |
|
let mut names_ = vec![]; |
|
for (_, [_, name, _]) in re.captures_iter(&names).map(|x| x.extract()) { |
|
names_.push(name.to_string()); |
|
} |
|
Some(names_) |
|
} |
|
None => None, |
|
} |
|
} |
|
|
|
pub fn nk(&self) -> Option<u32> { |
|
|
|
match self.fetch_from_metadata("kpt_shape") { |
|
None => None, |
|
Some(kpt_string) => { |
|
let re = Regex::new(r"([0-9]+), ([0-9]+)").unwrap(); |
|
let caps = re.captures(&kpt_string).unwrap(); |
|
Some(caps.get(1).unwrap().as_str().parse::<u32>().unwrap()) |
|
} |
|
} |
|
} |
|
|
|
pub fn nc(&self) -> Option<u32> { |
|
|
|
match self.names() { |
|
|
|
Some(names) => Some(names.len() as u32), |
|
None => match self.task() { |
|
|
|
YOLOTask::Classify => Some(self.output_shapes()[0][1] as u32), |
|
YOLOTask::Detect => { |
|
if self.output_shapes()[0][1] == -1 { |
|
None |
|
} else { |
|
|
|
Some(self.output_shapes()[0][1] as u32 - 4) |
|
} |
|
} |
|
YOLOTask::Pose => { |
|
match self.nk() { |
|
None => None, |
|
Some(nk) => { |
|
if self.output_shapes()[0][1] == -1 { |
|
None |
|
} else { |
|
|
|
Some(self.output_shapes()[0][1] as u32 - 4 - 3 * nk) |
|
} |
|
} |
|
} |
|
} |
|
YOLOTask::Segment => { |
|
if self.output_shapes()[0][1] == -1 { |
|
None |
|
} else { |
|
|
|
Some((self.output_shapes()[0][1] - self.output_shapes()[1][1]) as u32 - 4) |
|
} |
|
} |
|
}, |
|
} |
|
} |
|
|
|
pub fn nm(&self) -> Option<u32> { |
|
|
|
match self.task() { |
|
YOLOTask::Segment => Some(self.output_shapes()[1][1] as u32), |
|
_ => None, |
|
} |
|
} |
|
|
|
pub fn na(&self) -> Option<u32> { |
|
|
|
match self.task() { |
|
YOLOTask::Segment | YOLOTask::Detect | YOLOTask::Pose => { |
|
if self.output_shapes()[0][2] == -1 { |
|
None |
|
} else { |
|
Some(self.output_shapes()[0][2] as u32) |
|
} |
|
} |
|
_ => None, |
|
} |
|
} |
|
|
|
pub fn author(&self) -> Option<String> { |
|
self.fetch_from_metadata("author") |
|
} |
|
|
|
pub fn version(&self) -> Option<String> { |
|
self.fetch_from_metadata("version") |
|
} |
|
} |
|
|