File size: 10,538 Bytes
4bb12e7
32652fd
cb85f33
6128255
32652fd
 
 
 
 
 
 
 
 
 
 
 
 
 
d602994
 
 
 
 
 
 
32652fd
4bb12e7
bcdcaab
32652fd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
88fac77
 
 
 
 
 
 
 
 
 
32652fd
88fac77
 
 
 
 
 
 
 
32652fd
88fac77
 
 
 
 
 
32652fd
 
 
 
 
 
 
88fac77
32652fd
 
 
 
 
 
88fac77
32652fd
245266f
32652fd
 
 
245266f
 
32652fd
 
229c085
 
 
986f7b7
 
146813d
32652fd
6d9209a
 
 
32652fd
 
 
6123b04
 
32652fd
 
 
 
 
6123b04
 
 
32652fd
 
 
6123b04
32652fd
 
 
 
 
6d9209a
32652fd
 
 
 
 
 
a86b1aa
32652fd
 
6123b04
fb73bc3
32652fd
00f5739
 
 
 
32652fd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
245266f
d602994
 
32652fd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2b71672
d602994
32652fd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d602994
32652fd
 
 
245266f
32652fd
 
 
a86b1aa
32652fd
 
 
a86b1aa
32652fd
245266f
 
 
 
 
32652fd
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
import os
import csv
import torch
import torchvision
import easyocr
import shutil
import random
import cv2
from glob import glob
from ultralytics import YOLOv10
import random
from glob import glob
from ultralytics import YOLOv10
import supervision as sva
from ultralytics import YOLOv10
import supervision as sv
import supervision as sv
from flask import Flask, request, jsonify, send_from_directory, render_template
import pytesseract
# Set the tesseract_cmd based on the operating system
if os.name == 'nt':  # For Windows
    pytesseract.pytesseract.tesseract_cmd = r'C:\Program Files\Tesseract-OCR\tesseract.exe'
elif os.name == 'posix':  # For Linux/MacOS
    pytesseract.pytesseract.tesseract_cmd = '/usr/bin/tesseract'  # Common location for Tesseract on Linux/MacOS

import textwrap
app = Flask(__name__)

def enhance_contrast(image):
    gray_image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
    equalized_image = cv2.equalizeHist(gray_image)
    return equalized_image


def calculate_iou(bbox1, bbox2):
    x1_max = max(bbox1[0], bbox2[0])
    y1_max = max(bbox1[1], bbox2[1])
    x2_min = min(bbox1[2], bbox2[2])
    y2_min = min(bbox1[3], bbox2[3])

    inter_area = max(0, x2_min - x1_max) * max(0, y2_min - y1_max)

    bbox1_area = (bbox1[2] - bbox1[0]) * (bbox1[3] - bbox1[1])
    bbox2_area = (bbox2[2] - bbox2[0]) * (bbox2[3] - bbox2[1])

    iou = inter_area / float(bbox1_area + bbox2_area - inter_area) if (bbox1_area + bbox2_area - inter_area) > 0 else 0
    return iou


def recreate_directories():
    # Paths for the directories
    cropped_dir = "./app/cropped_images/"
    output_dir1 = "./app/Folder1"
    output_dir2 = "./app/Folder2"
    output_dir3 = "./app/Folder3"
    UPLOAD_FOLDER = "./app/data1"

    # Remove existing directories
    if os.path.exists(cropped_dir):
        shutil.rmtree(cropped_dir)
    if os.path.exists(output_dir1):
        shutil.rmtree(output_dir1)
    if os.path.exists(output_dir2):
        shutil.rmtree(output_dir2)
    if os.path.exists(output_dir3):
        shutil.rmtree(output_dir3)
    if os.path.exists(UPLOAD_FOLDER):
        shutil.rmtree(UPLOAD_FOLDER)

    # Recreate directories
    os.makedirs(cropped_dir, exist_ok=True)
    os.makedirs(output_dir1, exist_ok=True)
    os.makedirs(output_dir2, exist_ok=True)
    os.makedirs(output_dir3, exist_ok=True)
    os.makedirs(UPLOAD_FOLDER, exist_ok=True)

@app.route('/')
def index():
    return render_template('index3.html')  # This will serve your HTML page

@app.route('/upload', methods=['POST'])
def upload_file():
    recreate_directories()
    if 'invoice-upload' not in request.files:
        return jsonify({'error': 'No file part'}), 400
    file = request.files['invoice-upload']
    if file.filename == '':
        return jsonify({'error': 'No selected file'}), 400
    if file:
        file_path = os.path.join('./app/data1', file.filename)
        file.save(file_path)
        output_image, output_csv,image_path = process_image()

        return jsonify({
            'image_path': output_image,
            'csv_path': output_csv,
            'original_image': image_path
        })
def process_image():
    print("Current working directory:", os.getcwd())
    
    # Check contents in the root directory
    print("Current directory contents:", os.listdir('/'))

    model = YOLOv10(f'./runs/detect/train3/weights/best (1).pt')
    dataset = sv.DetectionDataset.from_yolo(
        images_directory_path=f"./data/MyNewVersion5.0Dataset/valid/images",
        annotations_directory_path=f"./data/MyNewVersion5.0Dataset/valid/labels",
        data_yaml_path=f"./data/MyNewVersion5.0Dataset/data.yaml"
    )
    bounding_box_annotator = sv.BoundingBoxAnnotator()
    label_annotator = sv.LabelAnnotator()
    image_dir = "./app/data1"
    files = os.listdir('./app/data1')
    files.sort()
    files = files[0:100]
    print(files)
    counter = 0
    for ii in files:
        random_image_data = cv2.imread('./app/data1/' + ii)
        random_image_data1 = cv2.imread('./app/data1/' + ii)
        results = model(source='./app/data1/' + ii, conf=0.07)[0]
        detections = sv.Detections.from_ultralytics(results)
        annotated_image = bounding_box_annotator.annotate(scene=random_image_data, detections=detections)
        annotated_image = label_annotator.annotate(scene=annotated_image, detections=detections)
        save_path = "./app/Folder1/" + "detection" + ii
        cv2.imwrite(save_path, annotated_image)
        print(f"Annotated image saved at {save_path}")
        bounding_boxes = results.boxes.xyxy.cpu().numpy()
        class_ids = results.boxes.cls.cpu().numpy()
        confidences = results.boxes.conf.cpu().numpy()
        bounding_box_save_path = "./bounding_boxes.txt"
        with open(bounding_box_save_path, 'w') as f:
            for i, (bbox, class_id, confidence) in enumerate(zip(bounding_boxes, class_ids, confidences)):
                x1, y1, x2, y2 = map(int, bbox)
                f.write(f"Object {i + 1}: Class {class_id}, Confidence: {confidence:.2f}, "
                        f"Bounding box: ({x1}, {y1}, {x2}, {y2})\n")
                cropped_image = random_image_data1[y1:y2, x1:x2]
                cropped_image_path = os.path.join('./app/cropped_images/', f"cropped_object_{i + 1}.jpg")
                cv2.imwrite(cropped_image_path, cropped_image)
                print(f"Enhanced cropped image saved at {cropped_image_path}")
        print(f"Checking contents of /app/data: {bounding_box_save_path}")
        print(f"Directory listing: {os.listdir('./app/Folder1')}")
        print(f"Bounding box coordinates saved at {bounding_box_save_path}")
        import re
        input_file_path = './bounding_boxes.txt'
        cropped_images_folder = './app/cropped_images/'
        output_csv_path = './app/Folder2/' + ii + 'bounding_boxes_with_recognition.csv'
        with open(input_file_path, 'r') as infile:
            lines = infile.readlines()
        with open(output_csv_path, 'w', newline='', encoding='utf-8') as csvfile:
            csv_writer = csv.writer(csvfile)
            csv_writer.writerow(['Object ID', 'Bounding Box', 'Image Name', 'Recognized Text'])
            for i, line in enumerate(lines):
                object_id = f"Object_{i + 1}"
                bounding_box_info = line.strip()
                cropped_image_name = f"cropped_object_{i + 1}.jpg"
                cropped_image_path = os.path.join(cropped_images_folder, cropped_image_name)
                if os.path.exists(cropped_image_path):
                    bbox_match = re.search(r"Bounding box: \((\d+), (\d+), (\d+), (\d+)\)", bounding_box_info)
                    if bbox_match:
                        x1, y1, x2, y2 = map(int, bbox_match.groups())
                        detected_boxes = [[x1, x2, y1, y2]]
                    else:
                        print("No bounding box found in the info.")
                    cropped_image = cv2.imread(cropped_image_path, cv2.IMREAD_GRAYSCALE)
                    recognized_text = pytesseract.image_to_string(cropped_image,config="--psm 6 -c tessedit_char_whitelist=0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz-")
                    print(f"Recognized Text: {recognized_text}")
                   
                csv_writer.writerow([object_id, bounding_box_info, cropped_image_name, recognized_text])
        print(f"CSV file with recognition results saved at {output_csv_path}")

        def calculate_iou(bbox1, bbox2):
            x1_max = max(bbox1[0], bbox2[0])
            y1_max = max(bbox1[1], bbox2[1])
            x2_min = min(bbox1[2], bbox2[2])
            y2_min = min(bbox1[3], bbox2[3])

            inter_area = max(0, x2_min - x1_max) * max(0, y2_min - y1_max)

            bbox1_area = (bbox1[2] - bbox1[0]) * (bbox1[3] - bbox1[1])
            bbox2_area = (bbox2[2] - bbox2[0]) * (bbox2[3] - bbox2[1])

            iou = inter_area / float(bbox1_area + bbox2_area - inter_area) if (bbox1_area + bbox2_area - inter_area) > 0 else 0
            return iou

        image_path = "./app/data1/" + ii
        csv_file_path = output_csv_path = './app/Folder2/' + ii + 'bounding_boxes_with_recognition.csv'
        image = cv2.imread(image_path)
        font = cv2.FONT_HERSHEY_SIMPLEX
        font_scale = 1.3
        font_thickness = 2
        color = (255, 0, 255)
        bboxes = []
        recognized_texts = []
        with open(csv_file_path, 'r', encoding='utf-8') as csvfile:
            csv_reader = csv.DictReader(csvfile)
            for row in csv_reader:
                bbox_match = re.search(r'\((\d+), (\d+), (\d+), (\d+)\)', row['Bounding Box'])
                if bbox_match:
                    bbox = [int(bbox_match.group(i)) for i in range(1, 5)]
                    bboxes.append(bbox)
                    recognized_texts.append(row['Recognized Text'])
        filtered_bboxes = []
        filtered_texts = []
        iou_threshold = 0.4
        for i, bbox1 in enumerate(bboxes):
            keep = True
            for j, bbox2 in enumerate(filtered_bboxes):
                if calculate_iou(bbox1, bbox2) > iou_threshold:
                    keep = False
                    break
            if keep:
                filtered_bboxes.append(bbox1)
                filtered_texts.append(recognized_texts[i])
        for bbox, recognized_text in zip(filtered_bboxes, filtered_texts):
            x1, y1, x2, y2 = bbox
            cv2.rectangle(image, (x1, y1), (x2, y2), color, 2)
            max_chars_per_line = 60
            wrapped_text = textwrap.wrap(recognized_text, width=max_chars_per_line)
            text_y = y1 - 10 if y1 - 10 > 10 else y1 + 10
            for line in wrapped_text:
                cv2.putText(image, line, (x1, text_y), font, font_scale, color, font_thickness)
                text_y += int(font_scale * 20)
            output_image_path = "./app/Folder3/" + "annotated" + ii + ".png"
            cv2.imwrite(output_image_path, image)
            print(f"Annotated image saved at {output_image_path}")
            counter += 1
        return output_image_path, output_csv_path,image_path

@app.route('/download_csv/<filename>')
def download_csv(filename):
    return send_from_directory('./app/Folder2', filename, as_attachment=True)

@app.route('/download_image/<filename>')
def download_image(filename):
    return send_from_directory('./app/Folder3', filename, as_attachment=True)

@app.route('/uploads/<filename>')
def serve_uploaded_file(filename):
    return send_from_directory('./app/data1', filename)