File size: 8,350 Bytes
32652fd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
{
  "nbformat": 4,
  "nbformat_minor": 0,
  "metadata": {
    "colab": {
      "provenance": [],
      "gpuType": "T4"
    },
    "kernelspec": {
      "name": "python3",
      "display_name": "Python 3"
    },
    "language_info": {
      "name": "python"
    },
    "accelerator": "GPU"
  },
  "cells": [
    {
      "cell_type": "markdown",
      "source": [
        "<div align=\"center\">\n",
        "\n",
        "  <a href=\"https://ultralytics.com/yolov8\" target=\"_blank\">\n",
        "    <img width=\"1024\", src=\"https://raw.githubusercontent.com/ultralytics/assets/main/yolov8/banner-yolov8.png\"></a>\n",
        "\n",
        "  [中文](https://docs.ultralytics.com/zh/) | [한국어](https://docs.ultralytics.com/ko/) | [日本語](https://docs.ultralytics.com/ja/) | [Русский](https://docs.ultralytics.com/ru/) | [Deutsch](https://docs.ultralytics.com/de/) | [Français](https://docs.ultralytics.com/fr/) | [Español](https://docs.ultralytics.com/es/) | [Português](https://docs.ultralytics.com/pt/) | [हिन्दी](https://docs.ultralytics.com/hi/) | [العربية](https://docs.ultralytics.com/ar/)\n",
        "\n",
        "  <a href=\"https://colab.research.google.com/github/ultralytics/ultralytics/blob/main/examples/object_tracking.ipynb\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"></a>\n",
        "\n",
        "Welcome to the Ultralytics YOLOv8 🚀 notebook! <a href=\"https://github.com/ultralytics/ultralytics\">YOLOv8</a> is the latest version of the YOLO (You Only Look Once) AI models developed by <a href=\"https://ultralytics.com\">Ultralytics</a>. This notebook serves as the starting point for exploring the <a href=\"https://docs.ultralytics.com/modes/track/\">Object Tracking</a> and understand its features and capabilities.\n",
        "\n",
        "YOLOv8 models are fast, accurate, and easy to use, making them ideal for various object detection and image segmentation tasks. They can be trained on large datasets and run on diverse hardware platforms, from CPUs to GPUs.\n",
        "\n",
        "We hope that the resources in this notebook will help you get the most out of <a href=\"https://docs.ultralytics.com/modes/track/\">Ultralytics Object Tracking</a>. Please browse the YOLOv8 <a href=\"https://docs.ultralytics.com/\">Docs</a> for details, raise an issue on <a href=\"https://github.com/ultralytics/ultralytics\">GitHub</a> for support, and join our <a href=\"https://ultralytics.com/discord\">Discord</a> community for questions and discussions!\n",
        "\n",
        "</div>"
      ],
      "metadata": {
        "id": "PN1cAxdvd61e"
      }
    },
    {
      "cell_type": "markdown",
      "source": [
        "# Setup\n",
        "\n",
        "Pip install `ultralytics` and [dependencies](https://github.com/ultralytics/ultralytics/blob/main/pyproject.toml) and check software and hardware."
      ],
      "metadata": {
        "id": "o68Sg1oOeZm2"
      }
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "9dSwz_uOReMI"
      },
      "outputs": [],
      "source": [
        "!pip install ultralytics"
      ]
    },
    {
      "cell_type": "markdown",
      "source": [
        "# Ultralytics Object Tracking\n",
        "\n",
        "Within the domain of video analytics, object tracking stands out as a crucial undertaking. It goes beyond merely identifying the location and class of objects within the frame; it also involves assigning a unique ID to each detected object as the video unfolds. The applications of this technology are vast, spanning from surveillance and security to real-time sports analytics."
      ],
      "metadata": {
        "id": "m7VkxQ2aeg7k"
      }
    },
    {
      "cell_type": "markdown",
      "source": [
        "## CLI"
      ],
      "metadata": {
        "id": "-ZF9DM6e6gz0"
      }
    },
    {
      "cell_type": "code",
      "source": [
        "!yolo track source=\"/path/to/video/file.mp4\" save=True"
      ],
      "metadata": {
        "id": "-XJqhOwo6iqT"
      },
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "markdown",
      "source": [
        "## Python\n",
        "\n",
        "- Draw Object tracking trails"
      ],
      "metadata": {
        "id": "XRcw0vIE6oNb"
      }
    },
    {
      "cell_type": "code",
      "source": [
        "import cv2\n",
        "import numpy as np\n",
        "from ultralytics import YOLO\n",
        "\n",
        "from ultralytics.utils.checks import check_imshow\n",
        "from ultralytics.utils.plotting import Annotator, colors\n",
        "\n",
        "from collections import defaultdict\n",
        "\n",
        "track_history = defaultdict(lambda: [])\n",
        "model = YOLO(\"yolov8n.pt\")\n",
        "names = model.model.names\n",
        "\n",
        "video_path = \"/path/to/video/file.mp4\"\n",
        "cap = cv2.VideoCapture(video_path)\n",
        "assert cap.isOpened(), \"Error reading video file\"\n",
        "\n",
        "w, h, fps = (int(cap.get(x)) for x in (cv2.CAP_PROP_FRAME_WIDTH, cv2.CAP_PROP_FRAME_HEIGHT, cv2.CAP_PROP_FPS))\n",
        "\n",
        "result = cv2.VideoWriter(\"object_tracking.avi\",\n",
        "                       cv2.VideoWriter_fourcc(*'mp4v'),\n",
        "                       fps,\n",
        "                       (w, h))\n",
        "\n",
        "while cap.isOpened():\n",
        "    success, frame = cap.read()\n",
        "    if success:\n",
        "        results = model.track(frame, persist=True, verbose=False)\n",
        "        boxes = results[0].boxes.xyxy.cpu()\n",
        "\n",
        "        if results[0].boxes.id is not None:\n",
        "\n",
        "            # Extract prediction results\n",
        "            clss = results[0].boxes.cls.cpu().tolist()\n",
        "            track_ids = results[0].boxes.id.int().cpu().tolist()\n",
        "            confs = results[0].boxes.conf.float().cpu().tolist()\n",
        "\n",
        "            # Annotator Init\n",
        "            annotator = Annotator(frame, line_width=2)\n",
        "\n",
        "            for box, cls, track_id in zip(boxes, clss, track_ids):\n",
        "                annotator.box_label(box, color=colors(int(cls), True), label=names[int(cls)])\n",
        "\n",
        "                # Store tracking history\n",
        "                track = track_history[track_id]\n",
        "                track.append((int((box[0] + box[2]) / 2), int((box[1] + box[3]) / 2)))\n",
        "                if len(track) > 30:\n",
        "                    track.pop(0)\n",
        "\n",
        "                # Plot tracks\n",
        "                points = np.array(track, dtype=np.int32).reshape((-1, 1, 2))\n",
        "                cv2.circle(frame, (track[-1]), 7, colors(int(cls), True), -1)\n",
        "                cv2.polylines(frame, [points], isClosed=False, color=colors(int(cls), True), thickness=2)\n",
        "\n",
        "        result.write(frame)\n",
        "        if cv2.waitKey(1) & 0xFF == ord(\"q\"):\n",
        "            break\n",
        "    else:\n",
        "        break\n",
        "\n",
        "result.release()\n",
        "cap.release()\n",
        "cv2.destroyAllWindows()"
      ],
      "metadata": {
        "id": "Cx-u59HQdu2o"
      },
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "markdown",
      "source": [
        "#Community Support\n",
        "\n",
        "For more information, you can explore <a href=\"https://docs.ultralytics.com/modes/track/\">Ultralytics Object Tracking Docs</a>\n",
        "\n",
        "Ultralytics ⚡ resources\n",
        "- About Us – https://ultralytics.com/about\n",
        "- Join Our Team – https://ultralytics.com/work\n",
        "- Contact Us – https://ultralytics.com/contact\n",
        "- Discord – https://ultralytics.com/discord\n",
        "- Ultralytics License – https://ultralytics.com/license\n",
        "\n",
        "YOLOv8 🚀 resources\n",
        "- GitHub – https://github.com/ultralytics/ultralytics\n",
        "- Docs – https://docs.ultralytics.com/"
      ],
      "metadata": {
        "id": "QrlKg-y3fEyD"
      }
    }
  ]
}