ClassCat's picture
update app.py
aa767bc
import torch
from torch import nn
import torch.nn.functional as F
from torchvision.transforms import ToTensor
# Define model
class ConvNet(nn.Module):
def __init__(self):
super(ConvNet, self).__init__()
self.conv1 = nn.Conv2d(1, 32, kernel_size=5)
self.conv2 = nn.Conv2d(32, 32, kernel_size=5)
self.conv3 = nn.Conv2d(32,64, kernel_size=5)
self.fc1 = nn.Linear(3*3*64, 256)
self.fc2 = nn.Linear(256, 10)
def forward(self, x):
x = F.relu(self.conv1(x))
#x = F.dropout(x, p=0.5, training=self.training)
x = F.relu(F.max_pool2d(self.conv2(x), 2))
x = F.dropout(x, p=0.5, training=self.training)
x = F.relu(F.max_pool2d(self.conv3(x),2))
x = F.dropout(x, p=0.5, training=self.training)
x = x.view(-1,3*3*64 )
x = F.relu(self.fc1(x))
x = F.dropout(x, training=self.training)
logits = self.fc2(x)
return logits
model = ConvNet()
model.load_state_dict(
torch.load("weights/mnist_convnet_model.pth",
map_location=torch.device('cpu'))
)
model.eval()
import gradio as gr
from torchvision import transforms
import os
import glob
examples_dir = './examples'
example_files = glob.glob(os.path.join(examples_dir, '*.png'))
def predict(image):
tsr_image = transforms.ToTensor()(image)
with torch.no_grad():
pred = model(tsr_image)
prob = torch.nn.functional.softmax(pred[0], dim=0)
confidences = {i: float(prob[i]) for i in range(10)}
return confidences
with gr.Blocks(css=".gradio-container {background:honeydew;}", title="MNIST Classification"
) as demo:
gr.HTML("""<div style="font-family:'Times New Roman', 'Serif'; font-size:16pt; font-weight:bold; text-align:center; color:royalblue;">MNIST Classification</div>""")
with gr.Row():
with gr.Tab("Canvas"):
input_image1 = gr.Image(source="canvas", type="pil", image_mode="L", shape=(28,28), invert_colors=True)
send_btn1 = gr.Button("Infer")
with gr.Tab("Image file"):
input_image2 = gr.Image(type="pil", image_mode="L", shape=(28, 28), invert_colors=True)
send_btn2 = gr.Button("Infer")
gr.Examples(example_files, inputs=input_image2)
#gr.Examples(['examples/sample02.png', 'examples/sample04.png'], inputs=input_image2)
output_label=gr.Label(label="Probabilities", num_top_classes=3)
send_btn1.click(fn=predict, inputs=input_image1, outputs=output_label)
send_btn2.click(fn=predict, inputs=input_image2, outputs=output_label)
# demo.queue(concurrency_count=3)
demo.launch()
### EOF ###