Cicciokr commited on
Commit
9eda48b
·
verified ·
1 Parent(s): cfc942c

Aggiunto Modello LuisVasquez

Browse files
Files changed (1) hide show
  1. app.py +10 -2
app.py CHANGED
@@ -14,7 +14,7 @@ input_text = st.text_input("Testo:", value="Lorem ipsum dolor sit amet, [MASK] a
14
 
15
  # Model based on BERT
16
  #modelname = "./models/latin_bert/"
17
- #modelname = "LuisAVasquez/simple-latin-bert-uncased"
18
  modelname = "./models/bert-base-latin-uncased"
19
 
20
 
@@ -22,10 +22,18 @@ tokenizer = AutoTokenizer.from_pretrained(modelname)
22
  model = AutoModelForMaskedLM.from_pretrained(modelname)
23
  fill_mask = pipeline("fill-mask", model=model, tokenizer=tokenizer)
24
 
 
 
 
 
25
  if input_text:
26
  predictions = fill_mask(input_text)
27
- st.subheader("Risultati delle previsioni con Simple Latin Bert:")
28
  for pred in predictions:
29
  st.write(f"**Parola**: {pred['token_str']}, **Probabilità**: {pred['score']:.4f}, **Sequence**: {pred['sequence']}")
 
 
 
 
30
 
31
 
 
14
 
15
  # Model based on BERT
16
  #modelname = "./models/latin_bert/"
17
+ modelname_lv = "LuisAVasquez/simple-latin-bert-uncased"
18
  modelname = "./models/bert-base-latin-uncased"
19
 
20
 
 
22
  model = AutoModelForMaskedLM.from_pretrained(modelname)
23
  fill_mask = pipeline("fill-mask", model=model, tokenizer=tokenizer)
24
 
25
+ tokenizer_lv = AutoTokenizer.from_pretrained(modelname_lv)
26
+ model_lv = AutoModelForMaskedLM.from_pretrained(modelname_lv)
27
+ fill_mask_lv = pipeline("fill-mask", model=model_lv, tokenizer=tokenizer_lv)
28
+
29
  if input_text:
30
  predictions = fill_mask(input_text)
31
+ st.subheader("Risultati delle previsioni con Bert Base Latin Uncased:")
32
  for pred in predictions:
33
  st.write(f"**Parola**: {pred['token_str']}, **Probabilità**: {pred['score']:.4f}, **Sequence**: {pred['sequence']}")
34
+ predictions_lv = fill_mask_lv(input_text)
35
+ st.subheader("Risultati delle previsioni con Simple Latin Bert:")
36
+ for pred_lv in predictions_lv:
37
+ st.write(f"**Parola**: {pred_lv['token_str']}, **Probabilità**: {pred_lv['score']:.4f}, **Sequence**: {pred_lv['sequence']}")
38
 
39