Spaces:
Sleeping
Sleeping
#import streamlit as st | |
#x = st.slider('Select a value') | |
#st.write(x, 'squared is', x * x) | |
import streamlit as st | |
from transformers import pipeline, AutoModelForMaskedLM, AutoTokenizer | |
st.title("Completamento del testo in Latino con Latin BERT") | |
st.write("Inserisci un testo con il token [MASK] per vedere le previsioni del modello.") | |
#dvces et reges carthaginiensivm hanno et mago qui [MASK] punico bello cornelium consulem aput liparas ceperunt | |
input_text = st.text_input("Testo:", value="Lorem ipsum dolor sit amet, [MASK] adipiscing elit.") | |
# Model based on BERT | |
#modelname = "./models/latin_bert/" | |
#Hugging face LuisAVasquez/simple-latin-bert-uncased | |
modelname_lv = "LuisAVasquez/simple-latin-bert-uncased" | |
#https://github.com/dbamman/latin-bert | |
modelname = "./models/bert-base-latin-uncased" | |
tokenizer = AutoTokenizer.from_pretrained(modelname) | |
model = AutoModelForMaskedLM.from_pretrained(modelname) | |
fill_mask = pipeline("fill-mask", model=model, tokenizer=tokenizer) | |
tokenizer_lv = AutoTokenizer.from_pretrained(modelname_lv) | |
model_lv = AutoModelForMaskedLM.from_pretrained(modelname_lv) | |
fill_mask_lv = pipeline("fill-mask", model=model_lv, tokenizer=tokenizer_lv) | |
if input_text: | |
predictions = fill_mask(input_text) | |
st.subheader("Risultati delle previsioni con Bert Base Latin Uncased:") | |
for pred in predictions: | |
st.write(f"**Parola**: {pred['token_str']}, **Probabilità**: {pred['score']:.4f}, **Sequence**: {pred['sequence']}") | |
predictions_lv = fill_mask_lv(input_text) | |
st.subheader("Risultati delle previsioni con Simple Latin Bert:") | |
for pred_lv in predictions_lv: | |
st.write(f"**Parola**: {pred_lv['token_str']}, **Probabilità**: {pred_lv['score']:.4f}, **Sequence**: {pred_lv['sequence']}") | |