Ci-Dave commited on
Commit
54855c7
·
1 Parent(s): 217d391
Files changed (1) hide show
  1. app.py +3 -114
app.py CHANGED
@@ -21,118 +21,7 @@ from sklearn.preprocessing import StandardScaler # Standardization of image dat
21
 
22
  # Load Gemini API key from Streamlit Secrets configuration
23
  api_key = st.secrets["gemini"]["api_key"] # Get API key from Streamlit secrets
24
- genai.configure(api_key=api_key) # Configure the Gemini API with the API keyimport streamlit as st
25
- import numpy as np
26
- import google.generativeai as genai
27
- import matplotlib.pyplot as plt
28
-
29
- from sklearn.ensemble import RandomForestClassifier
30
- from sklearn.linear_model import LogisticRegression
31
- from skimage.filters import sobel
32
- from skimage.segmentation import watershed
33
- from skimage.feature import canny, hog
34
- from skimage.color import rgb2gray
35
- from skimage import io
36
- from sklearn.preprocessing import StandardScaler
37
- from sklearn.metrics import accuracy_score
38
-
39
- # Load Gemini API key
40
- api_key = st.secrets["gemini"]["api_key"]
41
- genai.configure(api_key=api_key)
42
- MODEL_ID = "gemini-1.5-flash"
43
- gen_model = genai.GenerativeModel(MODEL_ID)
44
-
45
- def explain_ai(prompt):
46
- try:
47
- response = gen_model.generate_content(prompt)
48
- return response.text
49
- except Exception as e:
50
- return f"Error: {str(e)}"
51
-
52
-
53
- # Sidebar navigation
54
- st.sidebar.title("Navigation")
55
- page = st.sidebar.radio("Go to", ["Home", "Edge Detection", "Segmentation", "Feature Extraction", "AI Classification"])
56
-
57
- # Home Page
58
- if page == "Home":
59
- uploaded_file = st.file_uploader("Upload an image", type=["jpg", "png", "jpeg"])
60
- if uploaded_file is not None:
61
- image = io.imread(uploaded_file)
62
- if image.shape[-1] == 4:
63
- image = image[:, :, :3]
64
- gray = rgb2gray(image)
65
- st.image(image, caption="Uploaded Image", use_container_width=True)
66
- st.session_state["gray"] = gray # Store for use in other pages
67
-
68
- # Edge Detection Page
69
- elif page == "Edge Detection":
70
- st.title("Edge Detection")
71
- gray = st.session_state.get("gray")
72
- if gray is not None:
73
- edge_method = st.selectbox("Select Edge Detection Method", ["Canny", "Sobel"])
74
- edges = canny(gray) if edge_method == "Canny" else sobel(gray)
75
- st.image(edges, caption=f"{edge_method} Edge Detection", use_container_width=True)
76
- st.text_area("Explanation", explain_ai(f"Explain how {edge_method} edge detection works in computer vision."), height=300)
77
- else:
78
- st.warning("Please upload an image on the Home page.")
79
-
80
- # Segmentation Page
81
- elif page == "Segmentation":
82
- st.title("Image Segmentation")
83
- gray = st.session_state.get("gray")
84
- if gray is not None:
85
- seg_method = st.selectbox("Select Segmentation Method", ["Watershed", "Thresholding"])
86
- if seg_method == "Watershed":
87
- elevation_map = sobel(gray)
88
- markers = np.zeros_like(gray)
89
- markers[gray < 0.3] = 1
90
- markers[gray > 0.7] = 2
91
- segmented = watershed(elevation_map, markers.astype(np.int32))
92
- else:
93
- threshold_value = st.slider("Choose threshold value", 0, 255, 127)
94
- segmented = (gray > (threshold_value / 255)).astype(np.uint8) * 255
95
- st.image(segmented, caption=f"{seg_method} Segmentation", use_container_width=True)
96
- st.text_area("Explanation", explain_ai(f"Explain how {seg_method} segmentation works in image processing."), height=300)
97
- else:
98
- st.warning("Please upload an image on the Home page.")
99
-
100
- # Feature Extraction Page
101
- elif page == "Feature Extraction":
102
- st.title("HOG Feature Extraction")
103
- gray = st.session_state.get("gray")
104
- if gray is not None:
105
- fd, hog_image = hog(gray, pixels_per_cell=(8, 8), cells_per_block=(2, 2), visualize=True)
106
- st.image(hog_image, caption="HOG Features", use_container_width=True)
107
- st.text_area("Explanation", explain_ai("Explain how Histogram of Oriented Gradients (HOG) feature extraction works."), height=300)
108
- else:
109
- st.warning("Please upload an image on the Home page.")
110
-
111
- # AI Classification Page
112
- elif page == "AI Classification":
113
- st.title("AI Classification")
114
- gray = st.session_state.get("gray")
115
- if gray is not None:
116
- model_choice = st.selectbox("Select AI Model", ["Random Forest", "Logistic Regression"])
117
- flat_image = gray.flatten().reshape(-1, 1)
118
- labels = (flat_image > 0.5).astype(int).flatten()
119
- ai_model = RandomForestClassifier(n_jobs=1) if model_choice == "Random Forest" else LogisticRegression()
120
- scaler = StandardScaler()
121
- flat_image_scaled = scaler.fit_transform(flat_image)
122
- ai_model.fit(flat_image_scaled, labels)
123
- predictions = ai_model.predict(flat_image_scaled).reshape(gray.shape)
124
- predictions = (predictions * 255).astype(np.uint8)
125
- accuracy = accuracy_score(labels, ai_model.predict(flat_image_scaled))
126
- st.image(predictions, caption=f"{model_choice} Pixel Classification", use_container_width=True)
127
- st.text_area("Explanation", explain_ai(f"Explain how {model_choice} is used for image classification."), height=300)
128
- st.write(f"### Accuracy: {accuracy:.2f}")
129
- fig, ax = plt.subplots()
130
- ax.bar(["Accuracy"], [accuracy], color='blue')
131
- ax.set_ylim([0, 1])
132
- st.pyplot(fig)
133
- else:
134
- st.warning("Please upload an image on the Home page.")
135
-
136
 
137
  MODEL_ID = "gemini-1.5-flash" # Specify the model ID for Gemini
138
  gen_model = genai.GenerativeModel(MODEL_ID) # Initialize the Gemini model
@@ -149,8 +38,8 @@ def explain_ai(prompt):
149
  # App title
150
  st.title("Imaize: Smart Image Analyzer with XAI")
151
 
152
- # # Image upload section
153
- # uploaded_file = st.file_uploader("Upload an image", type=["jpg", "png", "jpeg"]) # Allow user to upload an image file
154
 
155
  # App Description
156
  st.markdown("""
 
21
 
22
  # Load Gemini API key from Streamlit Secrets configuration
23
  api_key = st.secrets["gemini"]["api_key"] # Get API key from Streamlit secrets
24
+ genai.configure(api_key=api_key) # Configure the Gemini API with the API key
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
25
 
26
  MODEL_ID = "gemini-1.5-flash" # Specify the model ID for Gemini
27
  gen_model = genai.GenerativeModel(MODEL_ID) # Initialize the Gemini model
 
38
  # App title
39
  st.title("Imaize: Smart Image Analyzer with XAI")
40
 
41
+ # Image upload section
42
+ uploaded_file = st.file_uploader("Upload an image", type=["jpg", "png", "jpeg"]) # Allow user to upload an image file
43
 
44
  # App Description
45
  st.markdown("""