modified
Browse files
app.py
CHANGED
@@ -21,7 +21,130 @@ from sklearn.preprocessing import StandardScaler # Standardization of image dat
|
|
21 |
|
22 |
# Load Gemini API key from Streamlit Secrets configuration
|
23 |
api_key = st.secrets["gemini"]["api_key"] # Get API key from Streamlit secrets
|
24 |
-
genai.configure(api_key=api_key) # Configure the Gemini API with the API
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
|
26 |
MODEL_ID = "gemini-1.5-flash" # Specify the model ID for Gemini
|
27 |
gen_model = genai.GenerativeModel(MODEL_ID) # Initialize the Gemini model
|
|
|
21 |
|
22 |
# Load Gemini API key from Streamlit Secrets configuration
|
23 |
api_key = st.secrets["gemini"]["api_key"] # Get API key from Streamlit secrets
|
24 |
+
genai.configure(api_key=api_key) # Configure the Gemini API with the API keyimport streamlit as st
|
25 |
+
import numpy as np
|
26 |
+
import google.generativeai as genai
|
27 |
+
import matplotlib.pyplot as plt
|
28 |
+
|
29 |
+
from sklearn.ensemble import RandomForestClassifier
|
30 |
+
from sklearn.linear_model import LogisticRegression
|
31 |
+
from skimage.filters import sobel
|
32 |
+
from skimage.segmentation import watershed
|
33 |
+
from skimage.feature import canny, hog
|
34 |
+
from skimage.color import rgb2gray
|
35 |
+
from skimage import io
|
36 |
+
from sklearn.preprocessing import StandardScaler
|
37 |
+
from sklearn.metrics import accuracy_score
|
38 |
+
|
39 |
+
# Load Gemini API key
|
40 |
+
api_key = st.secrets["gemini"]["api_key"]
|
41 |
+
genai.configure(api_key=api_key)
|
42 |
+
MODEL_ID = "gemini-1.5-flash"
|
43 |
+
gen_model = genai.GenerativeModel(MODEL_ID)
|
44 |
+
|
45 |
+
def explain_ai(prompt):
|
46 |
+
try:
|
47 |
+
response = gen_model.generate_content(prompt)
|
48 |
+
return response.text
|
49 |
+
except Exception as e:
|
50 |
+
return f"Error: {str(e)}"
|
51 |
+
|
52 |
+
# Streamlit app with multiple pages
|
53 |
+
st.set_page_config(page_title="Imaize: Smart Image Analyzer with XAI")
|
54 |
+
|
55 |
+
# Sidebar navigation
|
56 |
+
st.sidebar.title("Navigation")
|
57 |
+
page = st.sidebar.radio("Go to", ["Home", "Edge Detection", "Segmentation", "Feature Extraction", "AI Classification"])
|
58 |
+
|
59 |
+
# Home Page
|
60 |
+
if page == "Home":
|
61 |
+
st.title("Imaize: Smart Image Analyzer with XAI")
|
62 |
+
st.markdown("""
|
63 |
+
**Welcome to Imaize!** This app allows you to analyze images using AI-powered techniques:
|
64 |
+
- **Edge Detection**
|
65 |
+
- **Image Segmentation**
|
66 |
+
- **Feature Extraction**
|
67 |
+
- **AI Classification**
|
68 |
+
|
69 |
+
Upload an image and explore how AI explains the techniques!
|
70 |
+
""")
|
71 |
+
uploaded_file = st.file_uploader("Upload an image", type=["jpg", "png", "jpeg"])
|
72 |
+
if uploaded_file is not None:
|
73 |
+
image = io.imread(uploaded_file)
|
74 |
+
if image.shape[-1] == 4:
|
75 |
+
image = image[:, :, :3]
|
76 |
+
gray = rgb2gray(image)
|
77 |
+
st.image(image, caption="Uploaded Image", use_container_width=True)
|
78 |
+
st.session_state["gray"] = gray # Store for use in other pages
|
79 |
+
|
80 |
+
# Edge Detection Page
|
81 |
+
elif page == "Edge Detection":
|
82 |
+
st.title("Edge Detection")
|
83 |
+
gray = st.session_state.get("gray")
|
84 |
+
if gray is not None:
|
85 |
+
edge_method = st.selectbox("Select Edge Detection Method", ["Canny", "Sobel"])
|
86 |
+
edges = canny(gray) if edge_method == "Canny" else sobel(gray)
|
87 |
+
st.image(edges, caption=f"{edge_method} Edge Detection", use_container_width=True)
|
88 |
+
st.text_area("Explanation", explain_ai(f"Explain how {edge_method} edge detection works in computer vision."), height=300)
|
89 |
+
else:
|
90 |
+
st.warning("Please upload an image on the Home page.")
|
91 |
+
|
92 |
+
# Segmentation Page
|
93 |
+
elif page == "Segmentation":
|
94 |
+
st.title("Image Segmentation")
|
95 |
+
gray = st.session_state.get("gray")
|
96 |
+
if gray is not None:
|
97 |
+
seg_method = st.selectbox("Select Segmentation Method", ["Watershed", "Thresholding"])
|
98 |
+
if seg_method == "Watershed":
|
99 |
+
elevation_map = sobel(gray)
|
100 |
+
markers = np.zeros_like(gray)
|
101 |
+
markers[gray < 0.3] = 1
|
102 |
+
markers[gray > 0.7] = 2
|
103 |
+
segmented = watershed(elevation_map, markers.astype(np.int32))
|
104 |
+
else:
|
105 |
+
threshold_value = st.slider("Choose threshold value", 0, 255, 127)
|
106 |
+
segmented = (gray > (threshold_value / 255)).astype(np.uint8) * 255
|
107 |
+
st.image(segmented, caption=f"{seg_method} Segmentation", use_container_width=True)
|
108 |
+
st.text_area("Explanation", explain_ai(f"Explain how {seg_method} segmentation works in image processing."), height=300)
|
109 |
+
else:
|
110 |
+
st.warning("Please upload an image on the Home page.")
|
111 |
+
|
112 |
+
# Feature Extraction Page
|
113 |
+
elif page == "Feature Extraction":
|
114 |
+
st.title("HOG Feature Extraction")
|
115 |
+
gray = st.session_state.get("gray")
|
116 |
+
if gray is not None:
|
117 |
+
fd, hog_image = hog(gray, pixels_per_cell=(8, 8), cells_per_block=(2, 2), visualize=True)
|
118 |
+
st.image(hog_image, caption="HOG Features", use_container_width=True)
|
119 |
+
st.text_area("Explanation", explain_ai("Explain how Histogram of Oriented Gradients (HOG) feature extraction works."), height=300)
|
120 |
+
else:
|
121 |
+
st.warning("Please upload an image on the Home page.")
|
122 |
+
|
123 |
+
# AI Classification Page
|
124 |
+
elif page == "AI Classification":
|
125 |
+
st.title("AI Classification")
|
126 |
+
gray = st.session_state.get("gray")
|
127 |
+
if gray is not None:
|
128 |
+
model_choice = st.selectbox("Select AI Model", ["Random Forest", "Logistic Regression"])
|
129 |
+
flat_image = gray.flatten().reshape(-1, 1)
|
130 |
+
labels = (flat_image > 0.5).astype(int).flatten()
|
131 |
+
ai_model = RandomForestClassifier(n_jobs=1) if model_choice == "Random Forest" else LogisticRegression()
|
132 |
+
scaler = StandardScaler()
|
133 |
+
flat_image_scaled = scaler.fit_transform(flat_image)
|
134 |
+
ai_model.fit(flat_image_scaled, labels)
|
135 |
+
predictions = ai_model.predict(flat_image_scaled).reshape(gray.shape)
|
136 |
+
predictions = (predictions * 255).astype(np.uint8)
|
137 |
+
accuracy = accuracy_score(labels, ai_model.predict(flat_image_scaled))
|
138 |
+
st.image(predictions, caption=f"{model_choice} Pixel Classification", use_container_width=True)
|
139 |
+
st.text_area("Explanation", explain_ai(f"Explain how {model_choice} is used for image classification."), height=300)
|
140 |
+
st.write(f"### Accuracy: {accuracy:.2f}")
|
141 |
+
fig, ax = plt.subplots()
|
142 |
+
ax.bar(["Accuracy"], [accuracy], color='blue')
|
143 |
+
ax.set_ylim([0, 1])
|
144 |
+
st.pyplot(fig)
|
145 |
+
else:
|
146 |
+
st.warning("Please upload an image on the Home page.")
|
147 |
+
|
148 |
|
149 |
MODEL_ID = "gemini-1.5-flash" # Specify the model ID for Gemini
|
150 |
gen_model = genai.GenerativeModel(MODEL_ID) # Initialize the Gemini model
|