llm / services /model_service.py
Chris4K's picture
Update services/model_service.py
e8350ae verified
from transformers import AutoTokenizer, AutoModelForCausalLM
from sentence_transformers import SentenceTransformer
import torch
import logging
from config.config import settings
logger = logging.getLogger(__name__)
class ModelService:
_instance = None
def __new__(cls):
if cls._instance is None:
cls._instance = super().__new__(cls)
cls._instance._initialized = False
return cls._instance
def __init__(self):
if not self._initialized:
self._initialized = True
self.tokenizer = None
self.model = None
self.embedder = None
self._load_models()
def _load_models(self):
try:
logger.info("Loading models...")
# Load tokenizer
#self.tokenizer = AutoTokenizer.from_pretrained(settings.MODEL_NAME)
self.tokenizer = AutoTokenizer.from_pretrained(settings.MODEL_NAME, use_fast=False)
self.tokenizer.pad_token = self.tokenizer.eos_token
logger.info(f"Tokenizer for {settings.MODEL_NAME} loaded successfully.")
# Load language model
quantization_device = settings.DEVICE
quantization_bits = settings.QUANTIZATION_BITS
self.model = AutoModelForCausalLM.from_pretrained(
settings.MODEL_NAME,
torch_dtype=torch.float16 if quantization_device == "cuda" else torch.float32,
device_map="auto" if quantization_device == "cuda" else None,
# load_in_8bit=(quantization_bits == 8),
trust_remote_code=True
)
logger.info(f"Model {settings.MODEL_NAME} loaded successfully on {quantization_device}.")
# Load sentence embedder
self.embedder = SentenceTransformer(settings.EMBEDDER_MODEL, device='cuda' if torch.cuda.is_available() else 'cpu')
#self.embedder = SentenceTransformer(settings.EMBEDDER_MODEL)
logger.info(f"Embedder {settings.EMBEDDER_MODEL} loaded successfully.")
except Exception as e:
logger.error(f"Error loading models: {e}")
raise RuntimeError(f"Failed to initialize ModelService: {str(e)}")
def get_models(self):
"""
Returns the tokenizer, language model, and sentence embedder instances.
"""
if not self.tokenizer or not self.model or not self.embedder:
raise RuntimeError("Models are not fully loaded.")
return self.tokenizer, self.model, self.embedder