PropSentinelv1 / app.py
Cheselle's picture
Update app.py
0f36785 verified
raw
history blame
3.66 kB
import re
from langchain_openai import OpenAIEmbeddings
from langchain_openai import ChatOpenAI
from langchain_openai.embeddings import OpenAIEmbeddings
from langchain.prompts import ChatPromptTemplate
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.schema import StrOutputParser
from langchain_community.document_loaders import PyMuPDFLoader
from langchain_community.vectorstores import Qdrant
from langchain_core.runnables import RunnablePassthrough, RunnableParallel
from langchain_core.documents import Document
from operator import itemgetter
import os
from dotenv import load_dotenv
import chainlit as cl
load_dotenv()
document = PyMuPDFLoader(file_path="https://hiddenhistorycenter.org/wp-content/uploads/2016/10/PropagandaPersuasion2012.pdf").load()
def metadata_generator(document, name):
fixed_text_splitter = RecursiveCharacterTextSplitter(
chunk_size=1000,
chunk_overlap=200,
separators=["\n\n", "\n", ".", "!", "?"]
)
collection = fixed_text_splitter.split_documents(document)
for doc in collection:
doc.metadata["source"] = name
return collection
documents = metadata_generator(document, "Propaganda")
embeddings = OpenAIEmbeddings(model="text-embedding-3-small")
vectorstore = Qdrant.from_documents(
documents=documents,
embedding=embeddings,
location=":memory:",
collection_name="Propaganda"
)
alt_retriever = vectorstore.as_retriever()
## Generation LLM
llm = ChatOpenAI(model="gpt-4o")
RAG_PROMPT = """\
You are a propaganda expert.
Given a provided context and question, you must answer if the piece of text is propaganda and which techniques are used.
Think through your answer carefully and step by step.
Context: {context}
Question: {question}
"""
rag_prompt = ChatPromptTemplate.from_template(RAG_PROMPT)
retrieval_augmented_qa_chain = (
# INVOKE CHAIN WITH: {"question" : "<<SOME USER QUESTION>>"}
# "question" : populated by getting the value of the "question" key
# "context" : populated by getting the value of the "question" key and chaining it into the base_retriever
{"context": itemgetter("question") | alt_retriever, "question": itemgetter("question")}
# "context" : is assigned to a RunnablePassthrough object (will not be called or considered in the next step)
# by getting the value of the "context" key from the previous step
| RunnablePassthrough.assign(context=itemgetter("context"))
# "response" : the "context" and "question" values are used to format our prompt object and then piped
# into the LLM and stored in a key called "response"
# "context" : populated by getting the value of the "context" key from the previous step
| {"response": rag_prompt | llm, "context": itemgetter("context")}
)
@cl.on_message
async def handle_message(message):
try:
# Process the incoming question using the RAG chain
result = retrieval_augmented_qa_chain.invoke({"question": message.content})
# Create a new message for the response
response_message = cl.Message(content=result["response"].content)
# Send the response back to the user
await response_message.send()
except Exception as e:
# Handle any exception and log it or send a response back to the user
error_message = cl.Message(content=f"An error occurred: {str(e)}")
await error_message.send()
print(f"Error occurred: {e}")
# Run the ChainLit server
if __name__ == "__main__":
try:
cl.run()
except Exception as e:
print(f"Server error occurred: {e}")