File size: 3,995 Bytes
1e61831
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0f36785
44e5994
1e61831
 
 
 
0f36785
 
1e61831
 
 
 
 
 
 
44e5994
1e61831
 
 
 
44e5994
1e61831
 
44e5994
1e61831
 
 
 
44e5994
1e61831
 
a3bbd7a
 
1e61831
 
 
 
2f4646b
 
 
 
 
 
 
 
1e61831
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
44e5994
1e61831
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
import re

from langchain_openai import OpenAIEmbeddings
from langchain_openai import ChatOpenAI
from langchain_openai.embeddings import OpenAIEmbeddings

from langchain.prompts import ChatPromptTemplate
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.schema import StrOutputParser

from langchain_community.document_loaders import PyMuPDFLoader
from langchain_community.vectorstores import Qdrant

from langchain_core.runnables import RunnablePassthrough, RunnableParallel
from langchain_core.documents import Document

from operator import itemgetter
import os
from dotenv import load_dotenv
import chainlit as cl

load_dotenv()


document = PyMuPDFLoader(file_path="https://hiddenhistorycenter.org/wp-content/uploads/2016/10/PropagandaPersuasion2012.pdf").load()



def metadata_generator(document, name):
    fixed_text_splitter = RecursiveCharacterTextSplitter(
        chunk_size=1000,
        chunk_overlap=200,
        separators=["\n\n", "\n", ".", "!", "?"]
    )
    collection = fixed_text_splitter.split_documents(document)
    for doc in collection:
        doc.metadata["source"] = name
    return collection

documents = metadata_generator(document, "Propaganda")

embeddings = OpenAIEmbeddings(model="text-embedding-3-small")

vectorstore = Qdrant.from_documents(
    documents=documents,
    embedding=embeddings,
    location=":memory:",
    collection_name="Propaganda"
)
alt_retriever = vectorstore.as_retriever()

## Generation LLM
llm = ChatOpenAI(model="gpt-4o")

RAG_PROMPT = """\
You are a propaganda expert. 
Given a provided context and question, you must answer if the piece of text is propaganda and which techniques are used. 
Think through your answer carefully and step by step. 

Context: {context}
Question: {question}

The example of your response should be:

Whether the piece of text is propaganda or not.
If it is, cite the technique used and the relevant snippet of text where it is used then an overall evaluation of the input. 
Use real-time data to improve the quality of your answer and add better context
If it is not, just answer "Not Propaganda"

"""

rag_prompt = ChatPromptTemplate.from_template(RAG_PROMPT)

retrieval_augmented_qa_chain = (
    # INVOKE CHAIN WITH: {"question" : "<<SOME USER QUESTION>>"}
    # "question" : populated by getting the value of the "question" key
    # "context"  : populated by getting the value of the "question" key and chaining it into the base_retriever
    {"context": itemgetter("question") | alt_retriever, "question": itemgetter("question")}
    # "context"  : is assigned to a RunnablePassthrough object (will not be called or considered in the next step)
    #              by getting the value of the "context" key from the previous step
    | RunnablePassthrough.assign(context=itemgetter("context"))
    # "response" : the "context" and "question" values are used to format our prompt object and then piped
    #              into the LLM and stored in a key called "response"
    # "context"  : populated by getting the value of the "context" key from the previous step
    | {"response": rag_prompt | llm, "context": itemgetter("context")}
)



@cl.on_message
async def handle_message(message):
    try:
        # Process the incoming question using the RAG chain
        result = retrieval_augmented_qa_chain.invoke({"question": message.content})

        # Create a new message for the response
        response_message = cl.Message(content=result["response"].content)

        # Send the response back to the user
        await response_message.send()
    
    except Exception as e:
        # Handle any exception and log it or send a response back to the user
        error_message = cl.Message(content=f"An error occurred: {str(e)}")
        await error_message.send()
        print(f"Error occurred: {e}")

# Run the ChainLit server
if __name__ == "__main__":
    try:
        cl.run()
    except Exception as e:
        print(f"Server error occurred: {e}")