Spaces:
No application file
No application file
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,139 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from langchain_openai import ChatOpenAI
|
2 |
+
from langchain.prompts import ChatPromptTemplate
|
3 |
+
from langchain.schema import StrOutputParser
|
4 |
+
from langchain.schema.runnable import Runnable
|
5 |
+
from langchain.schema.runnable.config import RunnableConfig
|
6 |
+
from typing import cast
|
7 |
+
import os
|
8 |
+
from langchain_community.document_loaders import PyMuPDFLoader
|
9 |
+
from langchain_experimental.text_splitter import SemanticChunker
|
10 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
11 |
+
from langchain_openai.embeddings import OpenAIEmbeddings
|
12 |
+
from langchain_community.vectorstores import Qdrant
|
13 |
+
from langchain_core.runnables import RunnablePassthrough, RunnableParallel
|
14 |
+
from operator import itemgetter
|
15 |
+
import chainlit as cl
|
16 |
+
from openai import AsyncOpenAI
|
17 |
+
from dotenv import load_dotenv
|
18 |
+
|
19 |
+
load_dotenv()
|
20 |
+
|
21 |
+
# Set up API key for OpenAI
|
22 |
+
os.environ["OPENAI_API_KEY"] = os.getenv("OPENAI_API_KEY")
|
23 |
+
|
24 |
+
"""
|
25 |
+
"What is the AI Bill of Rights, and how does it affect the development of AI systems in the U.S.?"
|
26 |
+
|
27 |
+
"How is the government planning to regulate AI technologies in relation to privacy and data security?"
|
28 |
+
|
29 |
+
"What are the key principles outlined in the NIST AI Risk Management Framework?"
|
30 |
+
|
31 |
+
"How will the AI Bill of Rights affect businesses developing AI solutions for consumers?"
|
32 |
+
|
33 |
+
"What role does the government play in ensuring that AI is developed ethically and responsibly?"
|
34 |
+
|
35 |
+
"How might the outcomes of the upcoming elections impact AI regulation and policy?"
|
36 |
+
|
37 |
+
"What are the risks associated with using AI in political campaigns and decision-making?"
|
38 |
+
|
39 |
+
"How do the NIST guidelines help organizations reduce bias and ensure fairness in AI applications?"
|
40 |
+
|
41 |
+
"How are other countries approaching AI regulation compared to the U.S., and what can we learn from them?"
|
42 |
+
|
43 |
+
"What challenges do businesses face in complying with government guidelines like the AI Bill of Rights and NIST framework?"
|
44 |
+
|
45 |
+
"""
|
46 |
+
@cl.on_chat_start
|
47 |
+
async def on_chat_start():
|
48 |
+
model = ChatOpenAI(streaming=True)
|
49 |
+
|
50 |
+
# Define RAG prompt template
|
51 |
+
prompt = ChatPromptTemplate.from_messages(
|
52 |
+
[
|
53 |
+
(
|
54 |
+
"system",
|
55 |
+
"You're a very knowledgeable AI engineer who's good at explaining stuff like ELI5."
|
56 |
+
),
|
57 |
+
("human", "{context}\n\nQuestion: {question}")
|
58 |
+
]
|
59 |
+
)
|
60 |
+
|
61 |
+
# Load documents and create retriever
|
62 |
+
ai_framework_document = PyMuPDFLoader(file_path="https://nvlpubs.nist.gov/nistpubs/ai/NIST.AI.600-1.pdf").load()
|
63 |
+
ai_blueprint_document = PyMuPDFLoader(file_path="https://www.whitehouse.gov/wp-content/uploads/2022/10/Blueprint-for-an-AI-Bill-of-Rights.pdf").load()
|
64 |
+
|
65 |
+
|
66 |
+
def metadata_generator(document, name):
|
67 |
+
fixed_text_splitter = RecursiveCharacterTextSplitter(chunk_size=500,
|
68 |
+
chunk_overlap=100,
|
69 |
+
separators=["\n\n", "\n", ".", "!", "?"]
|
70 |
+
)
|
71 |
+
collection = fixed_text_splitter.split_documents(document)
|
72 |
+
for doc in collection:
|
73 |
+
doc.metadata["source"] = name
|
74 |
+
return collection
|
75 |
+
|
76 |
+
recursive_framework_document = metadata_generator(ai_framework_document, "AI Framework")
|
77 |
+
recursive_blueprint_document = metadata_generator(ai_blueprint_document, "AI Blueprint")
|
78 |
+
combined_documents = recursive_framework_document + recursive_blueprint_document
|
79 |
+
|
80 |
+
from transformers import AutoModel
|
81 |
+
embeddings = AutoModel.from_pretrained("Cheselle/finetuned-arctic-sentence")
|
82 |
+
|
83 |
+
# Vector store and retriever
|
84 |
+
vectorstore = Qdrant.from_documents(
|
85 |
+
documents=combined_documents,
|
86 |
+
embedding=embeddings,
|
87 |
+
location=":memory:",
|
88 |
+
collection_name="AI Policy"
|
89 |
+
)
|
90 |
+
|
91 |
+
retriever = vectorstore.as_retriever()
|
92 |
+
|
93 |
+
# Set the retriever and prompt into session for reuse
|
94 |
+
cl.user_session.set("runnable", model)
|
95 |
+
cl.user_session.set("retriever", retriever)
|
96 |
+
cl.user_session.set("prompt_template", prompt)
|
97 |
+
|
98 |
+
|
99 |
+
|
100 |
+
@cl.on_message
|
101 |
+
async def on_message(message: cl.Message):
|
102 |
+
# Get the stored model, retriever, and prompt
|
103 |
+
model = cast(ChatOpenAI, cl.user_session.get("runnable")) # type: ChatOpenAI
|
104 |
+
retriever = cl.user_session.get("retriever") # Get the retriever from the session
|
105 |
+
prompt_template = cl.user_session.get("prompt_template") # Get the RAG prompt template
|
106 |
+
|
107 |
+
# Log the message content
|
108 |
+
print(f"Received message: {message.content}")
|
109 |
+
|
110 |
+
# Retrieve relevant context from documents based on the user's message
|
111 |
+
relevant_docs = retriever.get_relevant_documents(message.content)
|
112 |
+
print(f"Retrieved {len(relevant_docs)} documents.")
|
113 |
+
|
114 |
+
if not relevant_docs:
|
115 |
+
print("No relevant documents found.")
|
116 |
+
await cl.Message(content="Sorry, I couldn't find any relevant documents.").send()
|
117 |
+
return
|
118 |
+
|
119 |
+
context = "\n\n".join([doc.page_content for doc in relevant_docs])
|
120 |
+
|
121 |
+
# Log the context to check
|
122 |
+
print(f"Context: {context}")
|
123 |
+
|
124 |
+
# Construct the final RAG prompt
|
125 |
+
final_prompt = prompt_template.format(context=context, question=message.content)
|
126 |
+
print(f"Final prompt: {final_prompt}")
|
127 |
+
|
128 |
+
# Initialize a streaming message
|
129 |
+
msg = cl.Message(content="")
|
130 |
+
|
131 |
+
# Stream the response from the model
|
132 |
+
async for chunk in model.astream(
|
133 |
+
final_prompt,
|
134 |
+
config=RunnableConfig(callbacks=[cl.LangchainCallbackHandler()]),
|
135 |
+
):
|
136 |
+
# Extract the content from AIMessageChunk and concatenate it to the message
|
137 |
+
await msg.stream_token(chunk.content)
|
138 |
+
|
139 |
+
await msg.send()
|