Spaces:
Sleeping
Sleeping
# 1. Imports and class names setup | |
import gradio as gr | |
import os | |
import torch | |
from model import create_effnetb2_model | |
from timeit import default_timer as timer | |
from typing import Tuple , Dict | |
# Setup class names | |
class_names = ['pizza','steak','sushi'] | |
# Model and transforms preparation | |
# Create EffNetB2 model | |
effnetb2 , effnetb2_transforms = create_effnetb2_model(num_classes=3) | |
# load and save weights | |
effnetb2.load_state_dict(torch.load("effnetb2.pth",map_location=torch.device('cpu'))) | |
#effnetb2.load_state_dict(torch.load("effnetb2.pth",map_location=torch.device('cpu'))) | |
# Predict function | |
def predict(img): | |
""" | |
Transforms and performs a prediction on img and returns prediction and time taken. | |
""" | |
# Start timer | |
start_time = timer() | |
# transform the target image and add a batch dimension | |
img = effnetb2_transforms(img).unsqueeze(0) | |
# put model into evaluation mode and turn on inference mode | |
effnetb2.eval() | |
with torch.inference_mode(): | |
# pass the transformed image through the model and turn the pred logits into prediction probabilities | |
pred_probs = torch.softmax(effnetb2(img), dim=1) | |
# create a prediction label and prediction probability dictionary | |
pred_labels_and_probs = {class_names[i]: float(pred_probs[0][i]) for i in range(len(class_names))} | |
# calculate time | |
pred_time = round(timer() - start_time , 5) | |
# return the prediction dictionary | |
return pred_labels_and_probs, pred_time | |
## Gradio app | |
# Create title, description and article strings | |
title = "FoodVision Mini ππ₯©π£" | |
description = "An EfficientNetB2 feature extractor computer vision model to classify images of food as pizza, steak or sushi." | |
article = "Created " | |
# Create examples list from "examples/" directory | |
#example_list = [["examples/" + example] for example in os.listdir("examples")] | |
# Create the Gradio demo | |
demo = gr.Interface(fn=predict, # mapping function from input to output | |
inputs=gr.Image(type="pil"), # what are the inputs? | |
outputs=[gr.Label(num_top_classes=3, label="Predictions"), # what are the outputs? | |
gr.Number(label="Prediction time (s)")], # our fn has two outputs, therefore we have two outputs | |
# Create examples list from "examples/" directory | |
#examples=example_list, | |
title=title, | |
description=description, | |
article=article) | |
# Launch the demo! | |
demo.launch(debug=True) | |