Spaces:
Configuration error
Configuration error
File size: 7,121 Bytes
1fb2616 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 |
import gradio as gr
from app import demo as app
import os
_docs = {'Log': {'description': 'Create a log component which can continuously read from a log file and display the content in a container.', 'members': {'__init__': {'log_file': {'type': 'str', 'default': 'None', 'description': 'the log file path to read from.'}, 'tail': {'type': 'int', 'default': '100', 'description': 'from the end of the file, the number of lines to start read from.'}, 'dark': {'type': 'bool', 'default': 'False', 'description': 'if True, will render the component in dark mode.'}, 'label': {'type': 'str | None', 'default': 'None', 'description': 'The label for this component. Appears above the component and is also used as the header if there are a table of examples for this component. If None and used in a `gr.Interface`, the label will be the name of the parameter this component is assigned to.'}, 'info': {'type': 'str | None', 'default': 'None', 'description': 'additional component description.'}, 'every': {'type': 'float', 'default': '0.3', 'description': 'New log pulling interval.'}, 'show_label': {'type': 'bool | None', 'default': 'None', 'description': 'if True, will display label.'}, 'container': {'type': 'bool', 'default': 'True', 'description': 'If True, will place the component in a container - providing some extra padding around the border.'}, 'scale': {'type': 'int | None', 'default': 'None', 'description': 'relative size compared to adjacent Components. For example if Components A and B are in a Row, and A has scale=2, and B has scale=1, A will be twice as wide as B. Should be an integer. scale applies in Rows, and to top-level Components in Blocks where fill_height=True.'}, 'min_width': {'type': 'int', 'default': '160', 'description': 'minimum pixel width, will wrap if not sufficient screen space to satisfy this value. If a certain scale value results in this Component being narrower than min_width, the min_width parameter will be respected first.'}, 'interactive': {'type': 'bool | None', 'default': 'None', 'description': 'if True, will be rendered as an editable textbox; if False, editing will be disabled. If not provided, this is inferred based on whether the component is used as an input or output.'}, 'visible': {'type': 'bool', 'default': 'True', 'description': 'If False, component will be hidden.'}, 'elem_id': {'type': 'str | None', 'default': 'None', 'description': 'An optional string that is assigned as the id of this component in the HTML DOM. Can be used for targeting CSS styles.'}, 'elem_classes': {'type': 'list[str] | str | None', 'default': 'None', 'description': 'An optional list of strings that are assigned as the classes of this component in the HTML DOM. Can be used for targeting CSS styles.'}, 'render': {'type': 'bool', 'default': 'True', 'description': 'If False, component will not render be rendered in the Blocks context. Should be used if the intention is to assign event listeners now but render the component later.'}}, 'postprocess': {}, 'preprocess': {'return': {'type': 'typing.Any', 'description': "The preprocessed input data sent to the user's function in the backend."}, 'value': None}}, 'events': {'load': {'type': None, 'default': None, 'description': 'This listener is triggered when the Log initially loads in the browser.'}}}, '__meta__': {'additional_interfaces': {}, 'user_fn_refs': {'Log': []}}}
abs_path = os.path.join(os.path.dirname(__file__), "css.css")
with gr.Blocks(
css=abs_path,
theme=gr.themes.Default(
font_mono=[
gr.themes.GoogleFont("Inconsolata"),
"monospace",
],
),
) as demo:
gr.Markdown(
"""
# `gradio_log`
<div style="display: flex; gap: 7px;">
<img alt="Static Badge" src="https://img.shields.io/badge/version%20-%200.0.1%20-%20orange">
</div>
Python library for easily interacting with trained machine learning models
""", elem_classes=["md-custom"], header_links=True)
app.render()
gr.Markdown(
"""
## Installation
```bash
pip install gradio_log
```
## Usage
```python
import gradio as gr
from gradio_log import Log
with open("/tmp/test.log", "wb") as f:
# write some random log to f, with colored and uncolored text
f.write(b"[INFO] Everything is fine.\n")
f.write(b"\x1b[34m[DEBUG] Debugging information.\x1b[0m\n")
f.write(b"\x1b[32m[SUCCESS] Task completed successfully.\x1b[0m\n")
f.write(b"\x1b[33m[WARNING] Something is not right.\x1b[0m\n")
f.write(b"\x1b[31m[ERROR] Unexpected error occured.\x1b[0m\n")
with gr.Blocks(theme=gr.themes.Soft()) as demo:
with gr.Row():
with gr.Column(scale=1):
Log("/tmp/test.log")
with gr.Column(scale=1):
Log(
"/tmp/test.log",
dark=True,
tail=4,
label="dark mode, read from last 4 lines of log",
)
if __name__ == "__main__":
demo.launch()
```
""", elem_classes=["md-custom"], header_links=True)
gr.Markdown("""
## `Log`
### Initialization
""", elem_classes=["md-custom"], header_links=True)
gr.ParamViewer(value=_docs["Log"]["members"]["__init__"], linkify=[])
gr.Markdown("### Events")
gr.ParamViewer(value=_docs["Log"]["events"], linkify=['Event'])
gr.Markdown("""
### User function
The impact on the users predict function varies depending on whether the component is used as an input or output for an event (or both).
- When used as an Input, the component only impacts the input signature of the user function.
- When used as an output, the component only impacts the return signature of the user function.
The code snippet below is accurate in cases where the component is used as both an input and an output.
- **As input:** Is passed, the preprocessed input data sent to the user's function in the backend.
```python
def predict(
value: typing.Any
) -> Unknown:
return value
```
""", elem_classes=["md-custom", "Log-user-fn"], header_links=True)
demo.load(None, js=r"""function() {
const refs = {};
const user_fn_refs = {
Log: [], };
requestAnimationFrame(() => {
Object.entries(user_fn_refs).forEach(([key, refs]) => {
if (refs.length > 0) {
const el = document.querySelector(`.${key}-user-fn`);
if (!el) return;
refs.forEach(ref => {
el.innerHTML = el.innerHTML.replace(
new RegExp("\\b"+ref+"\\b", "g"),
`<a href="#h-${ref.toLowerCase()}">${ref}</a>`
);
})
}
})
Object.entries(refs).forEach(([key, refs]) => {
if (refs.length > 0) {
const el = document.querySelector(`.${key}`);
if (!el) return;
refs.forEach(ref => {
el.innerHTML = el.innerHTML.replace(
new RegExp("\\b"+ref+"\\b", "g"),
`<a href="#h-${ref.toLowerCase()}">${ref}</a>`
);
})
}
})
})
}
""")
demo.launch()
|