Spaces:
Runtime error
Runtime error
# Copyright 2022 Google LLC | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import torch | |
import numpy as np | |
class ScoreParams: | |
def __init__(self, gap, match, mismatch): | |
self.gap = gap | |
self.match = match | |
self.mismatch = mismatch | |
def mis_match_char(self, x, y): | |
if x != y: | |
return self.mismatch | |
else: | |
return self.match | |
def get_matrix(size_x, size_y, gap): | |
matrix = [] | |
for i in range(len(size_x) + 1): | |
sub_matrix = [] | |
for j in range(len(size_y) + 1): | |
sub_matrix.append(0) | |
matrix.append(sub_matrix) | |
for j in range(1, len(size_y) + 1): | |
matrix[0][j] = j*gap | |
for i in range(1, len(size_x) + 1): | |
matrix[i][0] = i*gap | |
return matrix | |
def get_matrix(size_x, size_y, gap): | |
matrix = np.zeros((size_x + 1, size_y + 1), dtype=np.int32) | |
matrix[0, 1:] = (np.arange(size_y) + 1) * gap | |
matrix[1:, 0] = (np.arange(size_x) + 1) * gap | |
return matrix | |
def get_traceback_matrix(size_x, size_y): | |
matrix = np.zeros((size_x + 1, size_y +1), dtype=np.int32) | |
matrix[0, 1:] = 1 | |
matrix[1:, 0] = 2 | |
matrix[0, 0] = 4 | |
return matrix | |
def global_align(x, y, score): | |
matrix = get_matrix(len(x), len(y), score.gap) | |
trace_back = get_traceback_matrix(len(x), len(y)) | |
for i in range(1, len(x) + 1): | |
for j in range(1, len(y) + 1): | |
left = matrix[i, j - 1] + score.gap | |
up = matrix[i - 1, j] + score.gap | |
diag = matrix[i - 1, j - 1] + score.mis_match_char(x[i - 1], y[j - 1]) | |
matrix[i, j] = max(left, up, diag) | |
if matrix[i, j] == left: | |
trace_back[i, j] = 1 | |
elif matrix[i, j] == up: | |
trace_back[i, j] = 2 | |
else: | |
trace_back[i, j] = 3 | |
return matrix, trace_back | |
def get_aligned_sequences(x, y, trace_back): | |
x_seq = [] | |
y_seq = [] | |
i = len(x) | |
j = len(y) | |
mapper_y_to_x = [] | |
while i > 0 or j > 0: | |
if trace_back[i, j] == 3: | |
x_seq.append(x[i-1]) | |
y_seq.append(y[j-1]) | |
i = i-1 | |
j = j-1 | |
mapper_y_to_x.append((j, i)) | |
elif trace_back[i][j] == 1: | |
x_seq.append('-') | |
y_seq.append(y[j-1]) | |
j = j-1 | |
mapper_y_to_x.append((j, -1)) | |
elif trace_back[i][j] == 2: | |
x_seq.append(x[i-1]) | |
y_seq.append('-') | |
i = i-1 | |
elif trace_back[i][j] == 4: | |
break | |
mapper_y_to_x.reverse() | |
return x_seq, y_seq, torch.tensor(mapper_y_to_x, dtype=torch.int64) | |
def get_mapper(x: str, y: str, tokenizer, max_len=77): | |
x_seq = tokenizer.encode(x) | |
y_seq = tokenizer.encode(y) | |
score = ScoreParams(0, 1, -1) | |
matrix, trace_back = global_align(x_seq, y_seq, score) | |
mapper_base = get_aligned_sequences(x_seq, y_seq, trace_back)[-1] | |
alphas = torch.ones(max_len) | |
alphas[: mapper_base.shape[0]] = mapper_base[:, 1].ne(-1).float() | |
mapper = torch.zeros(max_len, dtype=torch.int64) | |
mapper[:mapper_base.shape[0]] = mapper_base[:, 1] | |
mapper[mapper_base.shape[0]:] = len(y_seq) + torch.arange(max_len - len(y_seq)) | |
return mapper, alphas | |
def get_refinement_mapper(prompts, tokenizer, max_len=77): | |
x_seq = prompts[0] | |
mappers, alphas = [], [] | |
for i in range(1, len(prompts)): | |
mapper, alpha = get_mapper(x_seq, prompts[i], tokenizer, max_len) | |
mappers.append(mapper) | |
alphas.append(alpha) | |
return torch.stack(mappers), torch.stack(alphas) | |
def get_word_inds(text: str, word_place: int, tokenizer): | |
split_text = text.split(" ") | |
if type(word_place) is str: | |
word_place = [i for i, word in enumerate(split_text) if word_place == word] | |
elif type(word_place) is int: | |
word_place = [word_place] | |
out = [] | |
if len(word_place) > 0: | |
words_encode = [tokenizer.decode([item]).strip("#") for item in tokenizer.encode(text)][1:-1] | |
cur_len, ptr = 0, 0 | |
for i in range(len(words_encode)): | |
cur_len += len(words_encode[i]) | |
if ptr in word_place: | |
out.append(i + 1) | |
if cur_len >= len(split_text[ptr]): | |
ptr += 1 | |
cur_len = 0 | |
return np.array(out) | |
def get_replacement_mapper_(x: str, y: str, tokenizer, max_len=77): | |
words_x = x.split(' ') | |
words_y = y.split(' ') | |
if len(words_x) != len(words_y): | |
raise ValueError(f"attention replacement edit can only be applied on prompts with the same length" | |
f" but prompt A has {len(words_x)} words and prompt B has {len(words_y)} words.") | |
inds_replace = [i for i in range(len(words_y)) if words_y[i] != words_x[i]] | |
inds_source = [get_word_inds(x, i, tokenizer) for i in inds_replace] | |
inds_target = [get_word_inds(y, i, tokenizer) for i in inds_replace] | |
mapper = np.zeros((max_len, max_len)) | |
i = j = 0 | |
cur_inds = 0 | |
while i < max_len and j < max_len: | |
if cur_inds < len(inds_source) and inds_source[cur_inds][0] == i: | |
inds_source_, inds_target_ = inds_source[cur_inds], inds_target[cur_inds] | |
if len(inds_source_) == len(inds_target_): | |
mapper[inds_source_, inds_target_] = 1 | |
else: | |
ratio = 1 / len(inds_target_) | |
for i_t in inds_target_: | |
mapper[inds_source_, i_t] = ratio | |
cur_inds += 1 | |
i += len(inds_source_) | |
j += len(inds_target_) | |
elif cur_inds < len(inds_source): | |
mapper[i, j] = 1 | |
i += 1 | |
j += 1 | |
else: | |
mapper[j, j] = 1 | |
i += 1 | |
j += 1 | |
return torch.from_numpy(mapper).float() | |
def get_replacement_mapper(prompts, tokenizer, max_len=77): | |
x_seq = prompts[0] | |
mappers = [] | |
for i in range(1, len(prompts)): | |
mapper = get_replacement_mapper_(x_seq, prompts[i], tokenizer, max_len) | |
mappers.append(mapper) | |
return torch.stack(mappers) | |