File size: 6,090 Bytes
6da2189
49c69e8
 
 
 
90d82c3
49c69e8
 
 
e602685
 
 
6da2189
e602685
 
 
 
6da2189
e602685
 
49c69e8
 
 
 
e602685
 
49c69e8
e602685
49c69e8
 
e602685
 
 
 
 
 
 
 
 
 
 
 
49c69e8
 
6da2189
49c69e8
 
6da2189
 
49c69e8
 
6da2189
49c69e8
 
 
 
 
 
 
6da2189
49c69e8
 
6da2189
49c69e8
6da2189
49c69e8
 
 
 
 
 
 
e602685
49c69e8
 
e602685
 
 
49c69e8
e602685
 
 
 
49c69e8
e602685
 
 
 
 
49c69e8
e602685
 
 
49c69e8
e602685
 
 
49c69e8
e602685
 
 
49c69e8
e602685
49c69e8
e602685
 
49c69e8
 
 
e602685
 
 
 
 
 
 
 
49c69e8
 
 
 
 
 
 
 
 
6da2189
49c69e8
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
from diffusers import CycleDiffusionPipeline, DDIMScheduler
import gradio as gr
import torch
from PIL import Image
import utils
import streamlit as st

is_colab = utils.is_google_colab()

if False:
    scheduler = DDIMScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear",
                              num_train_timesteps=1000, clip_sample=False, set_alpha_to_one=False)

    model_id_or_path = "CompVis/stable-diffusion-v1-4"
    pipe = CycleDiffusionPipeline.from_pretrained(model_id_or_path,
                                                  use_auth_token=st.secrets["USER_TOKEN"],
                                                  scheduler=scheduler)

    if torch.cuda.is_available():
        pipe = pipe.to("cuda")

device = "GPU 🔥" if torch.cuda.is_available() else "CPU 🥶"


def inference(source_prompt, target_prompt, source_guidance_scale=1, guidance_scale=5, num_inference_steps=100,
              width=512, height=512, seed=0, img=None, strength=0.7):

    torch.manual_seed(seed)

    ratio = min(height / img.height, width / img.width)
    img = img.resize((int(img.width * ratio), int(img.height * ratio)))

    result = pipe(prompt=target_prompt,
                  source_prompt=source_prompt,
                  init_image=img,
                  num_inference_steps=num_inference_steps,
                  eta=0.1,
                  strength=strength,
                  guidance_scale=guidance_scale,
                  source_guidance_scale=source_guidance_scale,
                  ).images[0]

    return replace_nsfw_images(result)


def replace_nsfw_images(results):
    for i in range(len(results.images)):
        if results.nsfw_content_detected[i]:
            results.images[i] = Image.open("nsfw.png")
    return results.images[0]


css = """.finetuned-diffusion-div div{display:inline-flex;align-items:center;gap:.8rem;font-size:1.75rem}.finetuned-diffusion-div div h1{font-weight:900;margin-bottom:7px}.finetuned-diffusion-div p{margin-bottom:10px;font-size:94%}.finetuned-diffusion-div p a{text-decoration:underline}.tabs{margin-top:0;margin-bottom:0}#gallery{min-height:20rem}
"""
with gr.Blocks(css=css) as demo:
    gr.HTML(
        f"""
            <div class="finetuned-diffusion-div">
              <div>
                <h1>CycleDiffusion with Stable Diffusion</h1>
              </div>
              <p>
               Demo for CycleDiffusion with Stable Diffusion, built with Diffusers 🧨 by HuggingFace 🤗.
              </p>
              <p>You can skip the queue in the colab: <a href="https://colab.research.google.com/gist/qunash/42112fb104509c24fd3aa6d1c11dd6e0/copy-of-fine-tuned-diffusion-gradio.ipynb"><img data-canonical-src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab" src="https://camo.githubusercontent.com/84f0493939e0c4de4e6dbe113251b4bfb5353e57134ffd9fcab6b8714514d4d1/68747470733a2f2f636f6c61622e72657365617263682e676f6f676c652e636f6d2f6173736574732f636f6c61622d62616467652e737667"></a></p>
               Running on <b>{device}</b>{(" in a <b>Google Colab</b>." if is_colab else "")}
              </p>
            </div>
        """
    )
    with gr.Row():

        with gr.Column(scale=55):
            with gr.Group():

                with gr.Row():
                    generate = gr.Button(value="Generate").style(rounded=(False, True, True, False))
                image = gr.Image(label="Source image", height=256, tool="editor", type="pil")

                image_out = gr.Image(height=512)
                # gallery = gr.Gallery(
                #     label="Generated images", show_label=False, elem_id="gallery"
                # ).style(grid=[1], height="auto")

        with gr.Column(scale=45):
            with gr.Tab("Options"):
                with gr.Group():
                    source_prompt = gr.Textbox(label="Source prompt", placeholder="Source prompt describes the input image")
                    target_prompt = gr.Textbox(label="Target prompt", placeholder="Target prompt describes the output image")

                    with gr.Row():
                        source_guidance_scale = gr.Slider(label="Source guidance scale", value=1, minimum=1, maximum=10)
                        guidance_scale = gr.Slider(label="Target guidance scale", value=5, minimum=1, maximum=10)

                    with gr.Row():
                        steps = gr.Slider(label="Number of inference steps", value=100, minimum=25, maximum=500, step=1)
                        strength = gr.Slider(label="Strength", value=0.7, minimum=0.5, maximum=1, step=0.01)

                    with gr.Row():
                        width = gr.Slider(label="Width", value=512, minimum=64, maximum=1024, step=8)
                        height = gr.Slider(label="Height", value=512, minimum=64, maximum=1024, step=8)

                    seed = gr.Slider(0, 2147483647, label='Seed', value=0, step=1)

    inputs = [source_prompt, target_prompt, source_guidance_scale, guidance_scale, num_inference_steps,
              width, height, seed, img, strength]
    prompt.submit(inference, inputs=inputs, outputs=image_out)
    generate.click(inference, inputs=inputs, outputs=image_out)

    ex = gr.Examples(
        [
            ["A", "B", 7.5, 50, None],  # TODO: load image from a file.
            [],
        ],
        [source_prompt, target_prompt, source_guidance_scale, guidance_scale, num_inference_steps,
         width, height, seed, img, strength],
        image_out, inference, cache_examples=False)

    gr.Markdown('''
      Models by [@nitrosocke](https://huggingface.co/nitrosocke), [@haruu1367](https://twitter.com/haruu1367), [@Helixngc7293](https://twitter.com/DGSpitzer) and others. ❤️<br>
      Space by: [![Twitter Follow](https://img.shields.io/twitter/follow/hahahahohohe?label=%40anzorq&style=social)](https://twitter.com/hahahahohohe)
        
      ![visitors](https://visitor-badge.glitch.me/badge?page_id=anzorq.finetuned_diffusion)
    ''')

if not is_colab:
    demo.queue(concurrency_count=1)
demo.launch(debug=is_colab, share=is_colab)