File size: 21,087 Bytes
6da2189
49c69e8
 
 
 
9fc2574
 
 
 
 
 
 
 
49c69e8
 
04d4d07
 
9fc2574
f9410ef
 
 
 
 
 
 
 
 
 
 
 
 
 
49c69e8
9fc2574
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
55bfc51
9fc2574
 
 
 
 
 
 
 
 
 
 
58ca927
9fc2574
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
58ca927
9fc2574
 
 
 
 
 
 
 
 
 
 
 
 
 
58ca927
9fc2574
 
 
 
 
 
 
 
 
 
 
 
 
58ca927
9fc2574
 
 
 
 
 
 
55bfc51
9fc2574
 
 
 
49c69e8
 
e602685
9fc2574
fc379d8
49c69e8
e602685
49c69e8
 
e602685
 
9fc2574
08770df
9fc2574
 
 
 
 
 
08770df
9fc2574
 
 
 
 
 
08770df
cecb3d6
 
08770df
 
9fc2574
06c55e8
 
 
 
 
 
 
 
 
e602685
06c55e8
49c69e8
6da2189
49c69e8
 
6da2189
 
49c69e8
 
6da2189
c9928a7
49c69e8
 
 
 
c9928a7
49c69e8
6da2189
49c69e8
 
06c55e8
fc379d8
cecb3d6
49c69e8
af39750
 
 
f9410ef
af39750
f9410ef
 
 
 
 
 
 
 
 
 
 
08770df
 
 
 
 
 
 
 
f9410ef
08770df
 
 
 
 
af39750
08770df
 
fd8f4d5
04d4d07
77daaa0
 
7877c98
49c69e8
 
f9410ef
49c69e8
 
e602685
49c69e8
 
4527b8b
49c69e8
4527b8b
e602685
 
 
49c69e8
e602685
9fc2574
e602685
57320b0
 
9fc2574
57320b0
 
e602685
 
 
 
77daaa0
9fc2574
 
 
06c55e8
9fc2574
 
 
 
 
08770df
77daaa0
08770df
 
 
 
d0546cd
08770df
 
 
 
 
fc379d8
77daaa0
49c69e8
e602685
9fc2574
 
fc379d8
 
 
49c69e8
e602685
 
d0546cd
 
 
 
 
 
 
 
 
 
 
 
e602685
9fc2574
d0546cd
9fc2574
d0546cd
49c69e8
 
06c55e8
8278e6d
5a0d186
49c69e8
 
 
6da2189
49c69e8
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
from diffusers import CycleDiffusionPipeline, DDIMScheduler
import gradio as gr
import torch
from PIL import Image
import utils
import ptp_utils
import seq_aligner
import torch.nn.functional as nnf
from typing import Optional, Union, Tuple, List, Callable, Dict
import abc

LOW_RESOURCE = False
MAX_NUM_WORDS = 77

is_colab = utils.is_google_colab()
colab_instruction = "" if is_colab else """
<p>You can skip the queue using Colab: <a href="https://colab.research.google.com/gist/ChenWu98/0aa4fe7be80f6b45d3d055df9f14353a/copy-of-fine-tuned-diffusion-gradio.ipynb"><img data-canonical-src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab" src="https://colab.research.google.com/assets/colab-badge.svg"></a></p>"""

if True:
    model_id_or_path = "CompVis/stable-diffusion-v1-4"
    if is_colab:
        scheduler = DDIMScheduler.from_config(model_id_or_path, subfolder="scheduler")
        pipe = CycleDiffusionPipeline.from_pretrained(model_id_or_path, scheduler=scheduler)
    else:
        import streamlit as st
        scheduler = DDIMScheduler.from_config(model_id_or_path, use_auth_token=st.secrets["USER_TOKEN"], subfolder="scheduler")
        torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
        pipe = CycleDiffusionPipeline.from_pretrained(model_id_or_path, use_auth_token=st.secrets["USER_TOKEN"], scheduler=scheduler, torch_dtype=torch_dtype)
    tokenizer = pipe.tokenizer

    if torch.cuda.is_available():
        pipe = pipe.to("cuda")

device_print = "GPU πŸ”₯" if torch.cuda.is_available() else "CPU πŸ₯Ά"
device = "cuda" if torch.cuda.is_available() else "cpu"


class LocalBlend:

    def __call__(self, x_t, attention_store):
        k = 1
        maps = attention_store["down_cross"][2:4] + attention_store["up_cross"][:3]
        maps = [item.reshape(self.alpha_layers.shape[0], -1, 1, 16, 16, MAX_NUM_WORDS) for item in maps]
        maps = torch.cat(maps, dim=1)
        maps = (maps * self.alpha_layers).sum(-1).mean(1)
        mask = nnf.max_pool2d(maps, (k * 2 + 1, k * 2 + 1), (1, 1), padding=(k, k))
        mask = nnf.interpolate(mask, size=(x_t.shape[2:]))
        mask = mask / mask.max(2, keepdims=True)[0].max(3, keepdims=True)[0]
        mask = mask.gt(self.threshold)
        mask = (mask[:1] + mask[1:]).to(x_t.dtype)
        x_t = x_t[:1] + mask * (x_t - x_t[:1])
        return x_t

    def __init__(self, prompts: List[str], words: [List[List[str]]], threshold=.3):
        alpha_layers = torch.zeros(len(prompts),  1, 1, 1, 1, MAX_NUM_WORDS)
        for i, (prompt, words_) in enumerate(zip(prompts, words)):
            if type(words_) is str:
                words_ = [words_]
            for word in words_:
                ind = ptp_utils.get_word_inds(prompt, word, tokenizer)
                alpha_layers[i, :, :, :, :, ind] = 1
        self.alpha_layers = alpha_layers.to(device).to(torch_dtype)
        self.threshold = threshold


class AttentionControl(abc.ABC):

    def step_callback(self, x_t):
        return x_t

    def between_steps(self):
        return

    @property
    def num_uncond_att_layers(self):
        return self.num_att_layers if LOW_RESOURCE else 0

    @abc.abstractmethod
    def forward(self, attn, is_cross: bool, place_in_unet: str):
        raise NotImplementedError

    def __call__(self, attn, is_cross: bool, place_in_unet: str):
        if self.cur_att_layer >= self.num_uncond_att_layers:
            if LOW_RESOURCE:
                attn = self.forward(attn, is_cross, place_in_unet)
            else:
                h = attn.shape[0]
                attn[h // 2:] = self.forward(attn[h // 2:], is_cross, place_in_unet)
        self.cur_att_layer += 1
        if self.cur_att_layer == self.num_att_layers + self.num_uncond_att_layers:
            self.cur_att_layer = 0
            self.cur_step += 1
            self.between_steps()
        return attn

    def reset(self):
        self.cur_step = 0
        self.cur_att_layer = 0

    def __init__(self):
        self.cur_step = 0
        self.num_att_layers = -1
        self.cur_att_layer = 0


class EmptyControl(AttentionControl):

    def forward(self, attn, is_cross: bool, place_in_unet: str):
        return attn


class AttentionStore(AttentionControl):

    @staticmethod
    def get_empty_store():
        return {"down_cross": [], "mid_cross": [], "up_cross": [],
                "down_self": [],  "mid_self": [],  "up_self": []}

    def forward(self, attn, is_cross: bool, place_in_unet: str):
        key = f"{place_in_unet}_{'cross' if is_cross else 'self'}"
        if attn.shape[1] <= 32 ** 2:  # avoid memory overhead
            self.step_store[key].append(attn)
        return attn

    def between_steps(self):
        if len(self.attention_store) == 0:
            self.attention_store = self.step_store
        else:
            for key in self.attention_store:
                for i in range(len(self.attention_store[key])):
                    self.attention_store[key][i] += self.step_store[key][i]
        self.step_store = self.get_empty_store()

    def get_average_attention(self):
        average_attention = {key: [item / self.cur_step for item in self.attention_store[key]] for key in self.attention_store}
        return average_attention

    def reset(self):
        super(AttentionStore, self).reset()
        self.step_store = self.get_empty_store()
        self.attention_store = {}

    def __init__(self):
        super(AttentionStore, self).__init__()
        self.step_store = self.get_empty_store()
        self.attention_store = {}


class AttentionControlEdit(AttentionStore, abc.ABC):

    def step_callback(self, x_t):
        if self.local_blend is not None:
            x_t = self.local_blend(x_t, self.attention_store)
        return x_t

    def replace_self_attention(self, attn_base, att_replace):
        if att_replace.shape[2] <= 16 ** 2:
            return attn_base.unsqueeze(0).expand(att_replace.shape[0], *attn_base.shape)
        else:
            return att_replace

    @abc.abstractmethod
    def replace_cross_attention(self, attn_base, att_replace):
        raise NotImplementedError

    def forward(self, attn, is_cross: bool, place_in_unet: str):
        super(AttentionControlEdit, self).forward(attn, is_cross, place_in_unet)
        if is_cross or (self.num_self_replace[0] <= self.cur_step < self.num_self_replace[1]):
            h = attn.shape[0] // self.batch_size
            attn = attn.reshape(self.batch_size, h, *attn.shape[1:])
            attn_base, attn_repalce = attn[0], attn[1:]
            if is_cross:
                alpha_words = self.cross_replace_alpha[self.cur_step]
                attn_replace_new = self.replace_cross_attention(attn_base, attn_repalce) * alpha_words + (1 - alpha_words) * attn_repalce
                attn[1:] = attn_replace_new
            else:
                attn[1:] = self.replace_self_attention(attn_base, attn_repalce)
            attn = attn.reshape(self.batch_size * h, *attn.shape[2:])
        return attn

    def __init__(self, prompts, num_steps: int,
                 cross_replace_steps: Union[float, Tuple[float, float], Dict[str, Tuple[float, float]]],
                 self_replace_steps: Union[float, Tuple[float, float]],
                 local_blend: Optional[LocalBlend]):
        super(AttentionControlEdit, self).__init__()
        self.batch_size = len(prompts)
        self.cross_replace_alpha = ptp_utils.get_time_words_attention_alpha(prompts, num_steps, cross_replace_steps, tokenizer).to(device).to(torch_dtype)
        if type(self_replace_steps) is float:
            self_replace_steps = 0, self_replace_steps
        self.num_self_replace = int(num_steps * self_replace_steps[0]), int(num_steps * self_replace_steps[1])
        self.local_blend = local_blend


class AttentionReplace(AttentionControlEdit):

    def replace_cross_attention(self, attn_base, att_replace):
        return torch.einsum('hpw,bwn->bhpn', attn_base, self.mapper)

    def __init__(self, prompts, num_steps: int, cross_replace_steps: float, self_replace_steps: float,
                 local_blend: Optional[LocalBlend] = None):
        super(AttentionReplace, self).__init__(prompts, num_steps, cross_replace_steps, self_replace_steps, local_blend)
        self.mapper = seq_aligner.get_replacement_mapper(prompts, tokenizer).to(device).to(torch_dtype)


class AttentionRefine(AttentionControlEdit):

    def replace_cross_attention(self, attn_base, att_replace):
        attn_base_replace = attn_base[:, :, self.mapper].permute(2, 0, 1, 3)
        attn_replace = attn_base_replace * self.alphas + att_replace * (1 - self.alphas)
        return attn_replace

    def __init__(self, prompts, num_steps: int, cross_replace_steps: float, self_replace_steps: float,
                 local_blend: Optional[LocalBlend] = None):
        super(AttentionRefine, self).__init__(prompts, num_steps, cross_replace_steps, self_replace_steps, local_blend)
        self.mapper, alphas = seq_aligner.get_refinement_mapper(prompts, tokenizer)
        self.mapper, alphas = self.mapper.to(device).to(torch_dtype), alphas.to(device).to(torch_dtype)
        self.alphas = alphas.reshape(alphas.shape[0], 1, 1, alphas.shape[1])


def get_equalizer(text: str, word_select: Union[int, Tuple[int, ...]], values: Union[List[float], Tuple[float, ...]]):
    if type(word_select) is int or type(word_select) is str:
        word_select = (word_select,)
    equalizer = torch.ones(len(values), 77)
    values = torch.tensor(values, dtype=torch_dtype)
    for word in word_select:
        inds = ptp_utils.get_word_inds(text, word, tokenizer)
        equalizer[:, inds] = values
    return equalizer


def inference(source_prompt, target_prompt, source_guidance_scale=1, guidance_scale=5, num_inference_steps=100,
              width=512, height=512, seed=0, img=None, strength=0.7,
              cross_attention_control="None", cross_replace_steps=0.8, self_replace_steps=0.4):

    torch.manual_seed(seed)

    ratio = min(height / img.height, width / img.width)
    img = img.resize((int(img.width * ratio), int(img.height * ratio)))

    # create the CAC controller.
    if cross_attention_control == "Replace":
        controller = AttentionReplace([source_prompt, target_prompt],
                                      num_inference_steps,
                                      cross_replace_steps=cross_replace_steps,
                                      self_replace_steps=self_replace_steps,
                                      )
        ptp_utils.register_attention_control(pipe, controller)
    elif cross_attention_control == "Refine":
        controller = AttentionRefine([source_prompt, target_prompt],
                                     num_inference_steps,
                                     cross_replace_steps=cross_replace_steps,
                                     self_replace_steps=self_replace_steps,
                                     )
        ptp_utils.register_attention_control(pipe, controller)
    elif cross_attention_control == "None":
        controller = EmptyControl()
        ptp_utils.register_attention_control(pipe, controller)
    else:
        raise ValueError("Unknown cross_attention_control: {}".format(cross_attention_control))

    results = pipe(prompt=target_prompt,
                   source_prompt=source_prompt,
                   init_image=img,
                   num_inference_steps=num_inference_steps,
                   eta=0.1,
                   strength=strength,
                   guidance_scale=guidance_scale,
                   source_guidance_scale=source_guidance_scale,
                   )

    return replace_nsfw_images(results)


def replace_nsfw_images(results):
    for i in range(len(results.images)):
        if results.nsfw_content_detected[i]:
            results.images[i] = Image.open("nsfw.png")
    return results.images[0]


css = """.cycle-diffusion-div div{display:inline-flex;align-items:center;gap:.8rem;font-size:1.75rem}.cycle-diffusion-div div h1{font-weight:900;margin-bottom:7px}.cycle-diffusion-div p{margin-bottom:10px;font-size:94%}.cycle-diffusion-div p a{text-decoration:underline}.tabs{margin-top:0;margin-bottom:0}#gallery{min-height:20rem}
"""
with gr.Blocks(css=css) as demo:
    gr.HTML(
        f"""
            <div class="cycle-diffusion-div">
              <div>
                <h1>CycleDiffusion with Stable Diffusion</h1>
              </div>
              <p>
                Demo for CycleDiffusion with Stable Diffusion. <br>
                CycleDiffusion (<a href="https://arxiv.org/abs/2210.05559">πŸ“„ Paper link</a> | <a href="https://huggingface.co/docs/diffusers/main/en/api/pipelines/cycle_diffusion">🧨 Pipeline doc</a>) is an image-to-image translation method that supports stochastic samplers for diffusion models. <br>
                We also support the combination of CycleDiffusion and Cross Attention Control (CAC | <a href="https://arxiv.org/abs/2208.01626">πŸ“„ Paper link</a>). CAC is a technique to transfer the attention map from the source prompt to the target prompt. <br>
              </p>
              <p>
              <b>Quick start</b>: <br>
              1. Click one row of Examples at the end of this page. It will fill all inputs needed. <br>
              2. Click the "Run CycleDiffusion" button. <br>
              </p>
              <p>
              {colab_instruction}
               Running on <b>{device_print}</b>{(" in a <b>Google Colab</b>." if is_colab else "")}
              </p>
            </div>
        """
    )
    with gr.Accordion("See Details", open=False):
        gr.HTML(
            f"""
            <div class="cycle-diffusion-div">
              <p>
                <b>How to use:</b> <br>
                1. Upload an image. <br>
                2. Enter the source and target prompts. <br>
                3. Select the source guidance scale (for "encoding") and the target guidance scale (for "decoding"). <br>
                4. Select the strength (smaller strength means better content preservation). <br>
                5 (optional). Configurate Cross Attention Control options (e.g., CAC type, cross replace steps, self replace steps). <br>
                6 (optional). Configurate other options (e.g., image size, inference steps, random seed). <br>
                7. Click the "Run CycleDiffusion" button. <br>
              </p>
              <p>
                <b>Notes:</b> <br>
                1. CycleDiffusion is likely to fail when drastic changes are intended (e.g., changing a large black car to red). <br>
                2. The value of strength can be set larger when CAC is used. <br>
                3. If CAC type is "Replace", the source and target prompts should differ in only one token; otherwise, an error will be raised. This is why we deliberately make some grammar mistakes in Examples.<br>
                4. If CAC type is "Refine", the source prompt be a subsequence of the target prompt; otherwise, an error will be raised. <br>
              </p>
              <p>
              <b>Runtimes:</b> <br>
              1. 30s on A10G. <br>
              2. 90s on T4. <br>
              </p>
            </div>
        """
        )
    with gr.Row():

        with gr.Column(scale=55):
            with gr.Group():

                img = gr.Image(label="Input image", height=512, tool="editor", type="pil")

                image_out = gr.Image(label="Output image", height=512)
                # gallery = gr.Gallery(
                #     label="Generated images", show_label=False, elem_id="gallery"
                # ).style(grid=[1], height="auto")

        with gr.Column(scale=45):
            with gr.Tab("Edit options"):
                with gr.Group():
                    with gr.Row():
                        source_prompt = gr.Textbox(label="Source prompt", placeholder="Source prompt describes the input image")
                        source_guidance_scale = gr.Slider(label="Source guidance scale", value=1, minimum=1, maximum=10)
                    with gr.Row():
                        target_prompt = gr.Textbox(label="Target prompt", placeholder="Target prompt describes the output image")
                        guidance_scale = gr.Slider(label="Target guidance scale", value=5, minimum=1, maximum=10)
                    with gr.Row():
                        strength = gr.Slider(label="Strength", value=0.7, minimum=0.5, maximum=1, step=0.01)
                    with gr.Row():
                        generate1 = gr.Button(value="Run CycleDiffusion")

            with gr.Tab("CAC options"):
                with gr.Group():
                    with gr.Row():
                        cross_attention_control = gr.Radio(label="CAC type", choices=["None", "Replace", "Refine"], value="None")
                    with gr.Row():
                        # If not "None", the following two parameters will be used.
                        cross_replace_steps = gr.Slider(label="Cross replace steps", value=0.8, minimum=0.0, maximum=1, step=0.01)
                        self_replace_steps = gr.Slider(label="Self replace steps", value=0.4, minimum=0.0, maximum=1, step=0.01)
                    with gr.Row():
                        generate2 = gr.Button(value="Run CycleDiffusion")

            with gr.Tab("Other options"):
                with gr.Group():
                    with gr.Row():
                        num_inference_steps = gr.Slider(label="Inference steps", value=100, minimum=25, maximum=500, step=1)
                        width = gr.Slider(label="Width", value=512, minimum=64, maximum=1024, step=8)
                        height = gr.Slider(label="Height", value=512, minimum=64, maximum=1024, step=8)

                    with gr.Row():
                        seed = gr.Slider(0, 2147483647, label='Seed', value=0, step=1)
                    with gr.Row():
                        generate3 = gr.Button(value="Run CycleDiffusion")

    inputs = [source_prompt, target_prompt, source_guidance_scale, guidance_scale, num_inference_steps,
              width, height, seed, img, strength,
              cross_attention_control, cross_replace_steps, self_replace_steps]
    generate1.click(inference, inputs=inputs, outputs=image_out)
    generate2.click(inference, inputs=inputs, outputs=image_out)
    generate3.click(inference, inputs=inputs, outputs=image_out)

    ex = gr.Examples(
        [
            ["An astronaut riding a horse", "An astronaut riding an elephant", 1, 2, 100, 512, 512, 0, "images/astronaut_horse.png", 0.8, "None", 0, 0],
            ["An astronaut riding a horse", "An astronaut riding a elephant", 1, 2, 100, 512, 512, 0, "images/astronaut_horse.png", 0.9, "Replace", 0.15, 0.10],
            ["A black colored car.", "A blue colored car.", 1, 3, 100, 512, 512, 0, "images/black_car.png", 0.85, "None", 0, 0],
            ["A black colored car.", "A blue colored car.", 1, 5, 100, 512, 512, 0, "images/black_car.png", 0.95, "Replace", 0.8, 0.4],
            ["A black colored car.", "A red colored car.", 1, 5, 100, 512, 512, 0, "images/black_car.png", 1, "Replace", 0.8, 0.4],
            ["An aerial view of autumn scene.", "An aerial view of winter scene.", 1, 5, 100, 512, 512, 0, "images/mausoleum.png", 0.9, "None", 0, 0],
            ["An aerial view of autumn scene.", "An aerial view of winter scene.", 1, 5, 100, 512, 512, 0, "images/mausoleum.png", 1, "Replace", 0.8, 0.4],
            ["A green apple and a black backpack on the floor.", "A red apple and a black backpack on the floor.", 1, 7, 100, 512, 512, 0, "images/apple_bag.png", 0.9, "None", 0, 0],
            ["A green apple and a black backpack on the floor.", "A red apple and a black backpack on the floor.", 1, 7, 100, 512, 512, 0, "images/apple_bag.png", 0.9, "Replace", 0.8, 0.4],
            ["A hotel room with red flowers on the bed.", "A hotel room with a cat sitting on the bed.", 1, 4, 100, 512, 512, 0, "images/flower_hotel.png", 0.8, "None", 0, 0],
            ["A hotel room with red flowers on the bed.", "A hotel room with blue flowers on the bed.", 1, 5, 100, 512, 512, 0, "images/flower_hotel.png", 0.95, "None", 0, 0],
            ["A green apple and a black backpack on the floor.", "Two green apples and a black backpack on the floor.", 1, 5, 100, 512, 512, 0, "images/apple_bag.png", 0.89, "None", 0, 0],
        ],
        [source_prompt, target_prompt, source_guidance_scale, guidance_scale, num_inference_steps,
         width, height, seed, img, strength,
         cross_attention_control, cross_replace_steps, self_replace_steps],
        image_out, inference, cache_examples=True)

    gr.Markdown('''
      Space built with Diffusers 🧨 by HuggingFace πŸ€—.
      [![Twitter Follow](https://img.shields.io/twitter/follow/ChenHenryWu?style=social)](https://twitter.com/ChenHenryWu) 
      ![visitors](https://visitor-badge.glitch.me/badge?page_id=ChenWu98.CycleDiffusion)
    ''')

if not is_colab:
    demo.queue(concurrency_count=1)
demo.launch(debug=is_colab, share=is_colab)