ChayanM commited on
Commit
f89f0cf
·
verified ·
1 Parent(s): 81aea19

Upload folder using huggingface_hub

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. Chest_Xray_Report_Generator-V2.py +307 -0
  2. Mimic_test/config.json +184 -0
  3. Mimic_test/generation_config.json +5 -0
  4. Mimic_test/merges.txt +0 -0
  5. Mimic_test/model.safetensors +3 -0
  6. Mimic_test/preprocessor_config.json +22 -0
  7. Mimic_test/special_tokens_map.json +6 -0
  8. Mimic_test/tokenizer.json +0 -0
  9. Mimic_test/tokenizer_config.json +20 -0
  10. Mimic_test/training_args.bin +3 -0
  11. Mimic_test/vocab.json +0 -0
  12. README.md +3 -9
  13. pytorch_grad_cam/Readme.md +29 -0
  14. pytorch_grad_cam/__init__.py +20 -0
  15. pytorch_grad_cam/__pycache__/__init__.cpython-39.pyc +0 -0
  16. pytorch_grad_cam/__pycache__/ablation_cam.cpython-39.pyc +0 -0
  17. pytorch_grad_cam/__pycache__/ablation_layer.cpython-39.pyc +0 -0
  18. pytorch_grad_cam/__pycache__/activations_and_gradients.cpython-39.pyc +0 -0
  19. pytorch_grad_cam/__pycache__/base_cam.cpython-39.pyc +0 -0
  20. pytorch_grad_cam/__pycache__/eigen_cam.cpython-39.pyc +0 -0
  21. pytorch_grad_cam/__pycache__/eigen_grad_cam.cpython-39.pyc +0 -0
  22. pytorch_grad_cam/__pycache__/fullgrad_cam.cpython-39.pyc +0 -0
  23. pytorch_grad_cam/__pycache__/grad_cam.cpython-39.pyc +0 -0
  24. pytorch_grad_cam/__pycache__/grad_cam_elementwise.cpython-39.pyc +0 -0
  25. pytorch_grad_cam/__pycache__/grad_cam_plusplus.cpython-39.pyc +0 -0
  26. pytorch_grad_cam/__pycache__/guided_backprop.cpython-39.pyc +0 -0
  27. pytorch_grad_cam/__pycache__/hirescam.cpython-39.pyc +0 -0
  28. pytorch_grad_cam/__pycache__/layer_cam.cpython-39.pyc +0 -0
  29. pytorch_grad_cam/__pycache__/random_cam.cpython-39.pyc +0 -0
  30. pytorch_grad_cam/__pycache__/score_cam.cpython-39.pyc +0 -0
  31. pytorch_grad_cam/__pycache__/xgrad_cam.cpython-39.pyc +0 -0
  32. pytorch_grad_cam/ablation_cam.py +148 -0
  33. pytorch_grad_cam/ablation_cam_multilayer.py +136 -0
  34. pytorch_grad_cam/ablation_layer.py +155 -0
  35. pytorch_grad_cam/activations_and_gradients.py +46 -0
  36. pytorch_grad_cam/base_cam.py +205 -0
  37. pytorch_grad_cam/cam_mult_image.py +37 -0
  38. pytorch_grad_cam/eigen_cam.py +23 -0
  39. pytorch_grad_cam/eigen_grad_cam.py +21 -0
  40. pytorch_grad_cam/feature_factorization/__init__.py +0 -0
  41. pytorch_grad_cam/feature_factorization/__pycache__/__init__.cpython-39.pyc +0 -0
  42. pytorch_grad_cam/feature_factorization/__pycache__/deep_feature_factorization.cpython-39.pyc +0 -0
  43. pytorch_grad_cam/feature_factorization/deep_feature_factorization.py +131 -0
  44. pytorch_grad_cam/fullgrad_cam.py +95 -0
  45. pytorch_grad_cam/grad_cam.py +22 -0
  46. pytorch_grad_cam/grad_cam_elementwise.py +30 -0
  47. pytorch_grad_cam/grad_cam_plusplus.py +32 -0
  48. pytorch_grad_cam/guided_backprop.py +100 -0
  49. pytorch_grad_cam/hirescam.py +32 -0
  50. pytorch_grad_cam/layer_cam.py +36 -0
Chest_Xray_Report_Generator-V2.py ADDED
@@ -0,0 +1,307 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import transformers
3
+ from transformers import pipeline
4
+ import gradio as gr
5
+ import cv2
6
+ import numpy as np
7
+ import pydicom
8
+
9
+ ##### Libraries For Grad-Cam-View
10
+ import os
11
+ import cv2
12
+ import numpy as np
13
+ import torch
14
+ from functools import partial
15
+ from torchvision import transforms
16
+ from pytorch_grad_cam import GradCAM, ScoreCAM, GradCAMPlusPlus, AblationCAM, XGradCAM, EigenCAM, EigenGradCAM, LayerCAM, FullGrad
17
+ from pytorch_grad_cam.utils.image import show_cam_on_image, preprocess_image
18
+ from pytorch_grad_cam.ablation_layer import AblationLayerVit
19
+ from transformers import VisionEncoderDecoderModel
20
+
21
+ def generate_gradcam(image_path, model_path, output_path, method='gradcam', use_cuda=True, aug_smooth=False, eigen_smooth=False):
22
+ methods = {
23
+ "gradcam": GradCAM,
24
+ "scorecam": ScoreCAM,
25
+ "gradcam++": GradCAMPlusPlus,
26
+ "ablationcam": AblationCAM,
27
+ "xgradcam": XGradCAM,
28
+ "eigencam": EigenCAM,
29
+ "eigengradcam": EigenGradCAM,
30
+ "layercam": LayerCAM,
31
+ "fullgrad": FullGrad
32
+ }
33
+
34
+ if method not in methods:
35
+ raise ValueError(f"Method should be one of {list(methods.keys())}")
36
+
37
+ model = VisionEncoderDecoderModel.from_pretrained(model_path)
38
+ model.encoder.eval()
39
+
40
+ if use_cuda and torch.cuda.is_available():
41
+ model.encoder = model.encoder.cuda()
42
+ else:
43
+ use_cuda = False
44
+
45
+ #target_layers = [model.blocks[-1].norm1] ## For ViT model
46
+ #target_layers = model.blocks[-1].norm1 ## For EfficientNet-B7 model
47
+ target_layers = [model.encoder.encoder.layer[-1].layernorm_before] ## For ViT-based VisionEncoderDecoder model
48
+ #target_layers = [model.encoder.encoder.layers[-1].blocks[-1].layernorm_before, model.encoder.encoder.layers[-1].blocks[0].layernorm_before] ## For Swin-based VisionEncoderDecoder mode
49
+
50
+
51
+ if method == "ablationcam":
52
+ cam = methods[method](model=model.encoder,
53
+ target_layers=target_layers,
54
+ use_cuda=use_cuda,
55
+ reshape_transform=reshape_transform,
56
+ ablation_layer=AblationLayerVit())
57
+ else:
58
+ cam = methods[method](model=model.encoder,
59
+ target_layers=target_layers,
60
+ use_cuda=use_cuda,
61
+ reshape_transform=reshape_transform)
62
+
63
+ rgb_img = cv2.imread(image_path, 1)[:, :, ::-1]
64
+ rgb_img = cv2.resize(rgb_img, (224, 224)) ## (224, 224)
65
+ rgb_img = np.float32(rgb_img) / 255
66
+ input_tensor = preprocess_image(rgb_img, mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
67
+
68
+ targets = None
69
+ cam.batch_size = 16
70
+
71
+ grayscale_cam = cam(input_tensor=input_tensor, targets=targets, eigen_smooth=eigen_smooth, aug_smooth=aug_smooth)
72
+ grayscale_cam = grayscale_cam[0, :]
73
+
74
+ cam_image = show_cam_on_image(rgb_img, grayscale_cam)
75
+ output_file = os.path.join(output_path, 'gradcam_result.png')
76
+ cv2.imwrite(output_file, cam_image)
77
+
78
+
79
+ def reshape_transform(tensor, height=14, width=14): ### height=14, width=14 for ViT-based Model
80
+ batch_size, token_number, embed_dim = tensor.size()
81
+ if token_number < height * width:
82
+ pad = torch.zeros(batch_size, height * width - token_number, embed_dim, device=tensor.device)
83
+ tensor = torch.cat([tensor, pad], dim=1)
84
+ elif token_number > height * width:
85
+ tensor = tensor[:, :height * width, :]
86
+
87
+ result = tensor.reshape(batch_size, height, width, embed_dim)
88
+ result = result.transpose(2, 3).transpose(1, 2)
89
+ return result
90
+
91
+
92
+
93
+
94
+ # Example usage:
95
+ #image_path = "/home/chayan/CGI_Net/images/images/CXR1353_IM-0230-1001.png"
96
+ model_path = "/home/chayan/ViT-GPT2/Mimic_test/"
97
+ output_path = "/home/chayan/ViT-GPT2/CAM-Result/"
98
+
99
+
100
+
101
+ def sentence_case(paragraph):
102
+ sentences = paragraph.split('. ')
103
+ formatted_sentences = [sentence.capitalize() for sentence in sentences if sentence]
104
+ formatted_paragraph = '. '.join(formatted_sentences)
105
+ return formatted_paragraph
106
+
107
+ def dicom_to_png(dicom_file, png_file):
108
+ # Load DICOM file
109
+ dicom_data = pydicom.dcmread(dicom_file)
110
+ dicom_data.PhotometricInterpretation = 'MONOCHROME1'
111
+
112
+ # Normalize pixel values to 0-255
113
+ img = dicom_data.pixel_array
114
+ img = img.astype(np.float32)
115
+
116
+ img = cv2.normalize(img, None, 0, 255, cv2.NORM_MINMAX)
117
+ img = img.astype(np.uint8)
118
+
119
+ # Save as PNG
120
+ cv2.imwrite(png_file, img)
121
+ return img
122
+
123
+
124
+ Image_Captioner = pipeline("image-to-text", model = "/home/chayan/ViT-GPT2/Mimic_test/")
125
+
126
+ data_dir = '/home/chayan/ViT-GPT2/'
127
+
128
+ def xray_report_generator(Image_file):
129
+ if Image_file[-4:] =='.dcm':
130
+ png_file = 'DCM2PNG.png'
131
+ dicom_to_png(Image_file, png_file)
132
+ Image_file = os.path.join(data_dir, png_file)
133
+ output = Image_Captioner(Image_file, max_new_tokens=512)
134
+
135
+ else:
136
+ output = Image_Captioner(Image_file, max_new_tokens=512)
137
+
138
+ result = output[0]['generated_text']
139
+ output_paragraph = sentence_case(result)
140
+
141
+ generate_gradcam(Image_file, model_path, output_path, method='gradcam', use_cuda=True)
142
+
143
+ grad_cam_image = output_path + 'gradcam_result.png'
144
+
145
+ return Image_file,grad_cam_image, output_paragraph
146
+
147
+
148
+
149
+ def save_feedback(feedback):
150
+ feedback_dir = "/home/chayan/ViT-GPT2/Feedback/" # Update this to your desired directory
151
+ if not os.path.exists(feedback_dir):
152
+ os.makedirs(feedback_dir)
153
+ feedback_file = os.path.join(feedback_dir, "feedback.txt")
154
+ with open(feedback_file, "a") as f:
155
+ f.write(feedback + "\n")
156
+ return "Feedback submitted successfully!"
157
+
158
+
159
+
160
+
161
+ # Custom CSS styles
162
+ custom_css = """
163
+ <style>
164
+
165
+ #title {
166
+ color: green;
167
+ font-size: 36px;
168
+ font-weight: bold;
169
+ }
170
+ #description {
171
+ color: green;
172
+ font-size: 22px;
173
+ }
174
+
175
+
176
+ #submit-btn {
177
+ background-color: #1E90FF; /* DodgerBlue */
178
+ color: green;
179
+ padding: 15px 32px;
180
+ text-align: center;
181
+ text-decoration: none;
182
+ display: inline-block;
183
+ font-size: 20px;
184
+ margin: 4px 2px;
185
+ cursor: pointer;
186
+ }
187
+ #submit-btn:hover {
188
+ background-color: #00FFFF;
189
+ }
190
+
191
+ .intext textarea {
192
+ color: green;
193
+ font-size: 20px;
194
+ font-weight: bold;
195
+ }
196
+
197
+
198
+ .small-button {
199
+ color: green;
200
+ padding: 5px 10px;
201
+ font-size: 20px;
202
+ }
203
+
204
+ </style>
205
+ """
206
+
207
+ # Sample image paths
208
+ sample_images = [
209
+ "/mnt/data/chayan/MIMIC-CXR-JPG/2.0.0/files/p19565388/s54621108/a9510716-02da91b0-61532c26-a65b2efc-c9dfa6f1.jpg",
210
+ "/mnt/data/chayan/MIMIC-CXR-JPG/2.0.0/files/p19454978/s52312858/93681764-ec39480e-0518b12c-199850c2-f15118ab.jpg",
211
+ "/mnt/data/chayan/MIMIC-CXR-JPG/2.0.0/files/p17340686/s55469953/6ff741e9-6ea01eef-1bf10153-d1b6beba-590b6620.jpg"
212
+ #"sample4.png",
213
+ #"sample5.png"
214
+ ]
215
+
216
+ def set_input_image(image_path):
217
+ return gr.update(value=image_path)
218
+
219
+
220
+ with gr.Blocks(css = custom_css) as demo:
221
+
222
+ #gr.HTML(custom_css) # Inject custom CSS
223
+
224
+ gr.Markdown(
225
+ """
226
+ <h1 style="color:blue; font-size: 36px; font-weight: bold">Chest X-ray Report Generator</h1>
227
+ <p id="description">Upload an X-ray image and get its report with heat-map visualization.</p>
228
+ """
229
+ )
230
+
231
+ with gr.Row():
232
+ inputs = gr.File(label="Upload Chest X-ray Image File", type="filepath")
233
+
234
+ with gr.Row():
235
+ with gr.Column(scale=1, min_width=300):
236
+ outputs1 = gr.Image(label="Image Viewer")
237
+ with gr.Column(scale=1, min_width=300):
238
+ outputs2 = gr.Image(label="Grad_CAM-Visualization")
239
+ with gr.Column(scale=1, min_width=300):
240
+ outputs3 = gr.Textbox(label="Generated Report", elem_classes = "intext")
241
+
242
+
243
+ submit_btn = gr.Button("Generate Report", elem_id="submit-btn")
244
+ submit_btn.click(
245
+ fn=xray_report_generator,
246
+ inputs=inputs,
247
+ outputs=[outputs1, outputs2, outputs3])
248
+
249
+
250
+ gr.Markdown(
251
+ """
252
+ <h2 style="color:green; font-size: 24px;">Or choose a sample image:</h2>
253
+ """
254
+ )
255
+
256
+ with gr.Row():
257
+ for idx, sample_image in enumerate(sample_images):
258
+ with gr.Column(scale=1):
259
+ #sample_image_component = gr.Image(value=sample_image, interactive=False)
260
+ select_button = gr.Button(f"Select Sample Image {idx+1}")
261
+ select_button.click(
262
+ fn=set_input_image,
263
+ inputs=gr.State(value=sample_image),
264
+ outputs=inputs
265
+ )
266
+
267
+
268
+
269
+ # Feedback section
270
+ gr.Markdown(
271
+ """
272
+ <h2 style="color:green; font-size: 24px;">Provide Your Valuable Feedback:</h2>
273
+ """
274
+ )
275
+
276
+ with gr.Row():
277
+ feedback_input = gr.Textbox(label="Your Feedback", lines=4, placeholder="Enter your feedback here...")
278
+ feedback_submit_btn = gr.Button("Submit Feedback", elem_classes="small-button")
279
+ feedback_output = gr.Textbox(label="Feedback Status", interactive=False)
280
+
281
+ feedback_submit_btn.click(
282
+ fn=save_feedback,
283
+ inputs=feedback_input,
284
+ outputs=feedback_output
285
+ )
286
+
287
+
288
+
289
+ demo.launch(share=True)
290
+
291
+
292
+ # inputs = gr.File(label="Upload Chest X-ray Image File", type="filepath")
293
+ # outputs1 =gr.Image(label="Image Viewer")
294
+ # outputs2 =gr.Image(label="Grad_CAM-Visualization")
295
+ # outputs3 = gr.Textbox(label="Generated Report")
296
+
297
+
298
+ # interface = gr.Interface(
299
+ # fn=xray_report_generator,
300
+ # inputs=inputs,
301
+ # outputs=[outputs1, outputs2, outputs3],
302
+ # title="Chest X-ray Report Generator",
303
+ # description="Upload an X-ray image and get its report.",
304
+ # )
305
+
306
+
307
+ # interface.launch(share=True)
Mimic_test/config.json ADDED
@@ -0,0 +1,184 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "VisionEncoderDecoderModel"
4
+ ],
5
+ "decoder": {
6
+ "_name_or_path": "gpt2",
7
+ "activation_function": "gelu_new",
8
+ "add_cross_attention": true,
9
+ "architectures": [
10
+ "GPT2LMHeadModel"
11
+ ],
12
+ "attn_pdrop": 0.1,
13
+ "bad_words_ids": null,
14
+ "begin_suppress_tokens": null,
15
+ "bos_token_id": 50256,
16
+ "chunk_size_feed_forward": 0,
17
+ "cross_attention_hidden_size": null,
18
+ "decoder_start_token_id": null,
19
+ "diversity_penalty": 0.0,
20
+ "do_sample": false,
21
+ "early_stopping": false,
22
+ "embd_pdrop": 0.1,
23
+ "encoder_no_repeat_ngram_size": 0,
24
+ "eos_token_id": 50256,
25
+ "exponential_decay_length_penalty": null,
26
+ "finetuning_task": null,
27
+ "forced_bos_token_id": null,
28
+ "forced_eos_token_id": null,
29
+ "id2label": {
30
+ "0": "LABEL_0",
31
+ "1": "LABEL_1"
32
+ },
33
+ "initializer_range": 0.02,
34
+ "is_decoder": true,
35
+ "is_encoder_decoder": false,
36
+ "label2id": {
37
+ "LABEL_0": 0,
38
+ "LABEL_1": 1
39
+ },
40
+ "layer_norm_epsilon": 1e-05,
41
+ "length_penalty": 1.0,
42
+ "max_length": 20,
43
+ "min_length": 0,
44
+ "model_type": "gpt2",
45
+ "n_ctx": 1024,
46
+ "n_embd": 768,
47
+ "n_head": 12,
48
+ "n_inner": null,
49
+ "n_layer": 12,
50
+ "n_positions": 1024,
51
+ "no_repeat_ngram_size": 0,
52
+ "num_beam_groups": 1,
53
+ "num_beams": 1,
54
+ "num_return_sequences": 1,
55
+ "output_attentions": false,
56
+ "output_hidden_states": false,
57
+ "output_scores": false,
58
+ "pad_token_id": null,
59
+ "prefix": null,
60
+ "problem_type": null,
61
+ "pruned_heads": {},
62
+ "remove_invalid_values": false,
63
+ "reorder_and_upcast_attn": false,
64
+ "repetition_penalty": 1.0,
65
+ "resid_pdrop": 0.1,
66
+ "return_dict": true,
67
+ "return_dict_in_generate": false,
68
+ "scale_attn_by_inverse_layer_idx": false,
69
+ "scale_attn_weights": true,
70
+ "sep_token_id": null,
71
+ "summary_activation": null,
72
+ "summary_first_dropout": 0.1,
73
+ "summary_proj_to_labels": true,
74
+ "summary_type": "cls_index",
75
+ "summary_use_proj": true,
76
+ "suppress_tokens": null,
77
+ "task_specific_params": {
78
+ "text-generation": {
79
+ "do_sample": true,
80
+ "max_length": 50
81
+ }
82
+ },
83
+ "temperature": 1.0,
84
+ "tf_legacy_loss": false,
85
+ "tie_encoder_decoder": false,
86
+ "tie_word_embeddings": true,
87
+ "tokenizer_class": null,
88
+ "top_k": 50,
89
+ "top_p": 1.0,
90
+ "torch_dtype": null,
91
+ "torchscript": false,
92
+ "typical_p": 1.0,
93
+ "use_bfloat16": false,
94
+ "use_cache": true,
95
+ "vocab_size": 50257
96
+ },
97
+ "decoder_start_token_id": 50256,
98
+ "encoder": {
99
+ "_name_or_path": "google/vit-base-patch16-224-in21k",
100
+ "add_cross_attention": false,
101
+ "architectures": [
102
+ "ViTModel"
103
+ ],
104
+ "attention_probs_dropout_prob": 0.0,
105
+ "bad_words_ids": null,
106
+ "begin_suppress_tokens": null,
107
+ "bos_token_id": null,
108
+ "chunk_size_feed_forward": 0,
109
+ "cross_attention_hidden_size": null,
110
+ "decoder_start_token_id": null,
111
+ "diversity_penalty": 0.0,
112
+ "do_sample": false,
113
+ "early_stopping": false,
114
+ "encoder_no_repeat_ngram_size": 0,
115
+ "encoder_stride": 16,
116
+ "eos_token_id": null,
117
+ "exponential_decay_length_penalty": null,
118
+ "finetuning_task": null,
119
+ "forced_bos_token_id": null,
120
+ "forced_eos_token_id": null,
121
+ "hidden_act": "gelu",
122
+ "hidden_dropout_prob": 0.0,
123
+ "hidden_size": 768,
124
+ "id2label": {
125
+ "0": "LABEL_0",
126
+ "1": "LABEL_1"
127
+ },
128
+ "image_size": 224,
129
+ "initializer_range": 0.02,
130
+ "intermediate_size": 3072,
131
+ "is_decoder": false,
132
+ "is_encoder_decoder": false,
133
+ "label2id": {
134
+ "LABEL_0": 0,
135
+ "LABEL_1": 1
136
+ },
137
+ "layer_norm_eps": 1e-12,
138
+ "length_penalty": 1.0,
139
+ "max_length": 20,
140
+ "min_length": 0,
141
+ "model_type": "vit",
142
+ "no_repeat_ngram_size": 0,
143
+ "num_attention_heads": 12,
144
+ "num_beam_groups": 1,
145
+ "num_beams": 1,
146
+ "num_channels": 3,
147
+ "num_hidden_layers": 12,
148
+ "num_return_sequences": 1,
149
+ "output_attentions": false,
150
+ "output_hidden_states": false,
151
+ "output_scores": false,
152
+ "pad_token_id": null,
153
+ "patch_size": 16,
154
+ "prefix": null,
155
+ "problem_type": null,
156
+ "pruned_heads": {},
157
+ "qkv_bias": true,
158
+ "remove_invalid_values": false,
159
+ "repetition_penalty": 1.0,
160
+ "return_dict": true,
161
+ "return_dict_in_generate": false,
162
+ "sep_token_id": null,
163
+ "suppress_tokens": null,
164
+ "task_specific_params": null,
165
+ "temperature": 1.0,
166
+ "tf_legacy_loss": false,
167
+ "tie_encoder_decoder": false,
168
+ "tie_word_embeddings": true,
169
+ "tokenizer_class": null,
170
+ "top_k": 50,
171
+ "top_p": 1.0,
172
+ "torch_dtype": null,
173
+ "torchscript": false,
174
+ "typical_p": 1.0,
175
+ "use_bfloat16": false
176
+ },
177
+ "eos_token_id": 50256,
178
+ "is_encoder_decoder": true,
179
+ "model_type": "vision-encoder-decoder",
180
+ "pad_token_id": 50256,
181
+ "tie_word_embeddings": false,
182
+ "torch_dtype": "float32",
183
+ "transformers_version": "4.37.1"
184
+ }
Mimic_test/generation_config.json ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ {
2
+ "bos_token_id": 50256,
3
+ "eos_token_id": 50256,
4
+ "transformers_version": "4.37.1"
5
+ }
Mimic_test/merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
Mimic_test/model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:eae9007ca4a208a6a3d523ec5f24ac54b6ae165263243c957a3afe18021483af
3
+ size 956835520
Mimic_test/preprocessor_config.json ADDED
@@ -0,0 +1,22 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "do_normalize": true,
3
+ "do_rescale": true,
4
+ "do_resize": true,
5
+ "image_mean": [
6
+ 0.5,
7
+ 0.5,
8
+ 0.5
9
+ ],
10
+ "feature_extractor_type": "ViTFeatureExtractor",
11
+ "image_std": [
12
+ 0.5,
13
+ 0.5,
14
+ 0.5
15
+ ],
16
+ "resample": 2,
17
+ "rescale_factor": 0.00392156862745098,
18
+ "size": {
19
+ "height": 224,
20
+ "width": 224
21
+ }
22
+ }
Mimic_test/special_tokens_map.json ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": "<|endoftext|>",
3
+ "eos_token": "<|endoftext|>",
4
+ "pad_token": "<|endoftext|>",
5
+ "unk_token": "<|endoftext|>"
6
+ }
Mimic_test/tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
Mimic_test/tokenizer_config.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_prefix_space": false,
3
+ "added_tokens_decoder": {
4
+ "50256": {
5
+ "content": "<|endoftext|>",
6
+ "lstrip": false,
7
+ "normalized": true,
8
+ "rstrip": false,
9
+ "single_word": false,
10
+ "special": true
11
+ }
12
+ },
13
+ "bos_token": "<|endoftext|>",
14
+ "clean_up_tokenization_spaces": true,
15
+ "eos_token": "<|endoftext|>",
16
+ "model_max_length": 1024,
17
+ "pad_token": "<|endoftext|>",
18
+ "tokenizer_class": "GPT2Tokenizer",
19
+ "unk_token": "<|endoftext|>"
20
+ }
Mimic_test/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ed01b457b864b39f97e7f2f322bba0c3d52815e5520732e5dab1ea9e98840a8b
3
+ size 4411
Mimic_test/vocab.json ADDED
The diff for this file is too large to render. See raw diff
 
README.md CHANGED
@@ -1,12 +1,6 @@
1
  ---
2
- title: Automatic Chest X-ray Report Generation System
3
- emoji: 🌖
4
- colorFrom: red
5
- colorTo: purple
6
  sdk: gradio
7
- sdk_version: 4.41.0
8
- app_file: app.py
9
- pinned: false
10
  ---
11
-
12
- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
1
  ---
2
+ title: Automatic_Chest_X-ray_Report_Generation_System
3
+ app_file: Chest_Xray_Report_Generator-V2.py
 
 
4
  sdk: gradio
5
+ sdk_version: 4.32.2
 
 
6
  ---
 
 
pytorch_grad_cam/Readme.md ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #### Grad-CAM visualization of any VisionEncoderDecoder model
2
+
3
+ # Step 1: Open /pytorch_grad_cam folder and make sure that in init.py all the CAM version is imported as the class name not the python file. For example
4
+ from pytorch_grad_cam.grad_cam import GradCAM
5
+ because when in the main python code (Grad_CAM_Visualization.py) we want to import every Class directly.
6
+
7
+ # Step2: Open the main Grad-CAM code: Grad_CAM_Visualization.py and edit the following function according to your model.
8
+ # "def reshape_transform(tensor, height=14, width=14):
9
+ result = tensor[:, 1:, :].reshape(tensor.size(0),
10
+ height, width, tensor.size(2))
11
+ result = result.transpose(2, 3).transpose(1, 2)
12
+ # return result"
13
+ here as the resized image tensor was [150,528] which should be equivalent to the reshaped transform of [1,14,14,768]
14
+ ## The error message should be like this if any mismatch:
15
+ RuntimeError: shape '[1, 16, 16, 768]' is invalid for input of size 150528
16
+
17
+ # Step 3: Choose your desired model from (DeIT_Base16_Pretrained with ImageNeT, Customized VisionTransformer, Dino_Base16_Pretrained with ImageNeT, My customized DeiT-CXR model, My customized EfficientNet model, and ##VisionEncoderDecoder Model)
18
+
19
+ # Step 4: Open base_cam.py file and go to the "forward" function of Class BaseCAM.
20
+ Write extra line "outputs = outputs.pooler_output" for ##VisionEncoderDecoder Model as we need to take the tensor of pooler_output of the model configuration. Follow the comment line as well.
21
+
22
+ # Step 5: Then follow the comments in the Grad_CAM_Visualization.py:
23
+ use model.encoder instead of model for ## VisionEncoderDecoder Model
24
+ use different target_layers for different model
25
+ target_layers = [model.encoder.encoder.layer[-1].layernorm_before] for ## VisionEncoderDecoder Model
26
+
27
+ # Step 6: Change the image_path and output_path accordingly
28
+
29
+ # Step 7: Run python Grad_CAM_Visualization.py --use-cuda --image-path "directory/image_path" --method "any grad-cam method defined in the code"
pytorch_grad_cam/__init__.py ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from pytorch_grad_cam.grad_cam import GradCAM
2
+ from pytorch_grad_cam.hirescam import HiResCAM
3
+ from pytorch_grad_cam.grad_cam_elementwise import GradCAMElementWise
4
+ from pytorch_grad_cam.ablation_layer import AblationLayer, AblationLayerVit, AblationLayerFasterRCNN
5
+ from pytorch_grad_cam.ablation_cam import AblationCAM
6
+ from pytorch_grad_cam.xgrad_cam import XGradCAM
7
+ from pytorch_grad_cam.grad_cam_plusplus import GradCAMPlusPlus
8
+ from pytorch_grad_cam.score_cam import ScoreCAM
9
+ from pytorch_grad_cam.layer_cam import LayerCAM
10
+ from pytorch_grad_cam.eigen_cam import EigenCAM
11
+ from pytorch_grad_cam.eigen_grad_cam import EigenGradCAM
12
+ from pytorch_grad_cam.random_cam import RandomCAM
13
+ from pytorch_grad_cam.fullgrad_cam import FullGrad
14
+ from pytorch_grad_cam.guided_backprop import GuidedBackpropReLUModel
15
+ from pytorch_grad_cam.activations_and_gradients import ActivationsAndGradients
16
+ from pytorch_grad_cam.feature_factorization.deep_feature_factorization import DeepFeatureFactorization, run_dff_on_image
17
+ import pytorch_grad_cam.utils.model_targets
18
+ import pytorch_grad_cam.utils.reshape_transforms
19
+ import pytorch_grad_cam.metrics.cam_mult_image
20
+ import pytorch_grad_cam.metrics.road
pytorch_grad_cam/__pycache__/__init__.cpython-39.pyc ADDED
Binary file (1.55 kB). View file
 
pytorch_grad_cam/__pycache__/ablation_cam.cpython-39.pyc ADDED
Binary file (3.68 kB). View file
 
pytorch_grad_cam/__pycache__/ablation_layer.cpython-39.pyc ADDED
Binary file (5.23 kB). View file
 
pytorch_grad_cam/__pycache__/activations_and_gradients.cpython-39.pyc ADDED
Binary file (1.89 kB). View file
 
pytorch_grad_cam/__pycache__/base_cam.cpython-39.pyc ADDED
Binary file (5.84 kB). View file
 
pytorch_grad_cam/__pycache__/eigen_cam.cpython-39.pyc ADDED
Binary file (931 Bytes). View file
 
pytorch_grad_cam/__pycache__/eigen_grad_cam.cpython-39.pyc ADDED
Binary file (925 Bytes). View file
 
pytorch_grad_cam/__pycache__/fullgrad_cam.cpython-39.pyc ADDED
Binary file (3.18 kB). View file
 
pytorch_grad_cam/__pycache__/grad_cam.cpython-39.pyc ADDED
Binary file (872 Bytes). View file
 
pytorch_grad_cam/__pycache__/grad_cam_elementwise.cpython-39.pyc ADDED
Binary file (1.09 kB). View file
 
pytorch_grad_cam/__pycache__/grad_cam_plusplus.cpython-39.pyc ADDED
Binary file (1.12 kB). View file
 
pytorch_grad_cam/__pycache__/guided_backprop.cpython-39.pyc ADDED
Binary file (3.41 kB). View file
 
pytorch_grad_cam/__pycache__/hirescam.cpython-39.pyc ADDED
Binary file (1.12 kB). View file
 
pytorch_grad_cam/__pycache__/layer_cam.cpython-39.pyc ADDED
Binary file (1.06 kB). View file
 
pytorch_grad_cam/__pycache__/random_cam.cpython-39.pyc ADDED
Binary file (921 Bytes). View file
 
pytorch_grad_cam/__pycache__/score_cam.cpython-39.pyc ADDED
Binary file (1.96 kB). View file
 
pytorch_grad_cam/__pycache__/xgrad_cam.cpython-39.pyc ADDED
Binary file (983 Bytes). View file
 
pytorch_grad_cam/ablation_cam.py ADDED
@@ -0,0 +1,148 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import torch
3
+ import tqdm
4
+ from typing import Callable, List
5
+ from pytorch_grad_cam.base_cam import BaseCAM
6
+ from pytorch_grad_cam.utils.find_layers import replace_layer_recursive
7
+ from pytorch_grad_cam.ablation_layer import AblationLayer
8
+
9
+
10
+ """ Implementation of AblationCAM
11
+ https://openaccess.thecvf.com/content_WACV_2020/papers/Desai_Ablation-CAM_Visual_Explanations_for_Deep_Convolutional_Network_via_Gradient-free_Localization_WACV_2020_paper.pdf
12
+
13
+ Ablate individual activations, and then measure the drop in the target score.
14
+
15
+ In the current implementation, the target layer activations is cached, so it won't be re-computed.
16
+ However layers before it, if any, will not be cached.
17
+ This means that if the target layer is a large block, for example model.featuers (in vgg), there will
18
+ be a large save in run time.
19
+
20
+ Since we have to go over many channels and ablate them, and every channel ablation requires a forward pass,
21
+ it would be nice if we could avoid doing that for channels that won't contribute anwyay, making it much faster.
22
+ The parameter ratio_channels_to_ablate controls how many channels should be ablated, using an experimental method
23
+ (to be improved). The default 1.0 value means that all channels will be ablated.
24
+ """
25
+
26
+
27
+ class AblationCAM(BaseCAM):
28
+ def __init__(self,
29
+ model: torch.nn.Module,
30
+ target_layers: List[torch.nn.Module],
31
+ use_cuda: bool = False,
32
+ reshape_transform: Callable = None,
33
+ ablation_layer: torch.nn.Module = AblationLayer(),
34
+ batch_size: int = 32,
35
+ ratio_channels_to_ablate: float = 1.0) -> None:
36
+
37
+ super(AblationCAM, self).__init__(model,
38
+ target_layers,
39
+ use_cuda,
40
+ reshape_transform,
41
+ uses_gradients=False)
42
+ self.batch_size = batch_size
43
+ self.ablation_layer = ablation_layer
44
+ self.ratio_channels_to_ablate = ratio_channels_to_ablate
45
+
46
+ def save_activation(self, module, input, output) -> None:
47
+ """ Helper function to save the raw activations from the target layer """
48
+ self.activations = output
49
+
50
+ def assemble_ablation_scores(self,
51
+ new_scores: list,
52
+ original_score: float,
53
+ ablated_channels: np.ndarray,
54
+ number_of_channels: int) -> np.ndarray:
55
+ """ Take the value from the channels that were ablated,
56
+ and just set the original score for the channels that were skipped """
57
+
58
+ index = 0
59
+ result = []
60
+ sorted_indices = np.argsort(ablated_channels)
61
+ ablated_channels = ablated_channels[sorted_indices]
62
+ new_scores = np.float32(new_scores)[sorted_indices]
63
+
64
+ for i in range(number_of_channels):
65
+ if index < len(ablated_channels) and ablated_channels[index] == i:
66
+ weight = new_scores[index]
67
+ index = index + 1
68
+ else:
69
+ weight = original_score
70
+ result.append(weight)
71
+
72
+ return result
73
+
74
+ def get_cam_weights(self,
75
+ input_tensor: torch.Tensor,
76
+ target_layer: torch.nn.Module,
77
+ targets: List[Callable],
78
+ activations: torch.Tensor,
79
+ grads: torch.Tensor) -> np.ndarray:
80
+
81
+ # Do a forward pass, compute the target scores, and cache the
82
+ # activations
83
+ handle = target_layer.register_forward_hook(self.save_activation)
84
+ with torch.no_grad():
85
+ outputs = self.model(input_tensor)
86
+ handle.remove()
87
+ original_scores = np.float32(
88
+ [target(output).cpu().item() for target, output in zip(targets, outputs)])
89
+
90
+ # Replace the layer with the ablation layer.
91
+ # When we finish, we will replace it back, so the original model is
92
+ # unchanged.
93
+ ablation_layer = self.ablation_layer
94
+ replace_layer_recursive(self.model, target_layer, ablation_layer)
95
+
96
+ number_of_channels = activations.shape[1]
97
+ weights = []
98
+ # This is a "gradient free" method, so we don't need gradients here.
99
+ with torch.no_grad():
100
+ # Loop over each of the batch images and ablate activations for it.
101
+ for batch_index, (target, tensor) in enumerate(
102
+ zip(targets, input_tensor)):
103
+ new_scores = []
104
+ batch_tensor = tensor.repeat(self.batch_size, 1, 1, 1)
105
+
106
+ # Check which channels should be ablated. Normally this will be all channels,
107
+ # But we can also try to speed this up by using a low
108
+ # ratio_channels_to_ablate.
109
+ channels_to_ablate = ablation_layer.activations_to_be_ablated(
110
+ activations[batch_index, :], self.ratio_channels_to_ablate)
111
+ number_channels_to_ablate = len(channels_to_ablate)
112
+
113
+ for i in tqdm.tqdm(
114
+ range(
115
+ 0,
116
+ number_channels_to_ablate,
117
+ self.batch_size)):
118
+ if i + self.batch_size > number_channels_to_ablate:
119
+ batch_tensor = batch_tensor[:(
120
+ number_channels_to_ablate - i)]
121
+
122
+ # Change the state of the ablation layer so it ablates the next channels.
123
+ # TBD: Move this into the ablation layer forward pass.
124
+ ablation_layer.set_next_batch(
125
+ input_batch_index=batch_index,
126
+ activations=self.activations,
127
+ num_channels_to_ablate=batch_tensor.size(0))
128
+ score = [target(o).cpu().item()
129
+ for o in self.model(batch_tensor)]
130
+ new_scores.extend(score)
131
+ ablation_layer.indices = ablation_layer.indices[batch_tensor.size(
132
+ 0):]
133
+
134
+ new_scores = self.assemble_ablation_scores(
135
+ new_scores,
136
+ original_scores[batch_index],
137
+ channels_to_ablate,
138
+ number_of_channels)
139
+ weights.extend(new_scores)
140
+
141
+ weights = np.float32(weights)
142
+ weights = weights.reshape(activations.shape[:2])
143
+ original_scores = original_scores[:, None]
144
+ weights = (original_scores - weights) / original_scores
145
+
146
+ # Replace the model back to the original state
147
+ replace_layer_recursive(self.model, ablation_layer, target_layer)
148
+ return weights
pytorch_grad_cam/ablation_cam_multilayer.py ADDED
@@ -0,0 +1,136 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import cv2
2
+ import numpy as np
3
+ import torch
4
+ import tqdm
5
+ from pytorch_grad_cam.base_cam import BaseCAM
6
+
7
+
8
+ class AblationLayer(torch.nn.Module):
9
+ def __init__(self, layer, reshape_transform, indices):
10
+ super(AblationLayer, self).__init__()
11
+
12
+ self.layer = layer
13
+ self.reshape_transform = reshape_transform
14
+ # The channels to zero out:
15
+ self.indices = indices
16
+
17
+ def forward(self, x):
18
+ self.__call__(x)
19
+
20
+ def __call__(self, x):
21
+ output = self.layer(x)
22
+
23
+ # Hack to work with ViT,
24
+ # Since the activation channels are last and not first like in CNNs
25
+ # Probably should remove it?
26
+ if self.reshape_transform is not None:
27
+ output = output.transpose(1, 2)
28
+
29
+ for i in range(output.size(0)):
30
+
31
+ # Commonly the minimum activation will be 0,
32
+ # And then it makes sense to zero it out.
33
+ # However depending on the architecture,
34
+ # If the values can be negative, we use very negative values
35
+ # to perform the ablation, deviating from the paper.
36
+ if torch.min(output) == 0:
37
+ output[i, self.indices[i], :] = 0
38
+ else:
39
+ ABLATION_VALUE = 1e5
40
+ output[i, self.indices[i], :] = torch.min(
41
+ output) - ABLATION_VALUE
42
+
43
+ if self.reshape_transform is not None:
44
+ output = output.transpose(2, 1)
45
+
46
+ return output
47
+
48
+
49
+ def replace_layer_recursive(model, old_layer, new_layer):
50
+ for name, layer in model._modules.items():
51
+ if layer == old_layer:
52
+ model._modules[name] = new_layer
53
+ return True
54
+ elif replace_layer_recursive(layer, old_layer, new_layer):
55
+ return True
56
+ return False
57
+
58
+
59
+ class AblationCAM(BaseCAM):
60
+ def __init__(self, model, target_layers, use_cuda=False,
61
+ reshape_transform=None):
62
+ super(AblationCAM, self).__init__(model, target_layers, use_cuda,
63
+ reshape_transform)
64
+
65
+ if len(target_layers) > 1:
66
+ print(
67
+ "Warning. You are usign Ablation CAM with more than 1 layers. "
68
+ "This is supported only if all layers have the same output shape")
69
+
70
+ def set_ablation_layers(self):
71
+ self.ablation_layers = []
72
+ for target_layer in self.target_layers:
73
+ ablation_layer = AblationLayer(target_layer,
74
+ self.reshape_transform, indices=[])
75
+ self.ablation_layers.append(ablation_layer)
76
+ replace_layer_recursive(self.model, target_layer, ablation_layer)
77
+
78
+ def unset_ablation_layers(self):
79
+ # replace the model back to the original state
80
+ for ablation_layer, target_layer in zip(
81
+ self.ablation_layers, self.target_layers):
82
+ replace_layer_recursive(self.model, ablation_layer, target_layer)
83
+
84
+ def set_ablation_layer_batch_indices(self, indices):
85
+ for ablation_layer in self.ablation_layers:
86
+ ablation_layer.indices = indices
87
+
88
+ def trim_ablation_layer_batch_indices(self, keep):
89
+ for ablation_layer in self.ablation_layers:
90
+ ablation_layer.indices = ablation_layer.indices[:keep]
91
+
92
+ def get_cam_weights(self,
93
+ input_tensor,
94
+ target_category,
95
+ activations,
96
+ grads):
97
+ with torch.no_grad():
98
+ outputs = self.model(input_tensor).cpu().numpy()
99
+ original_scores = []
100
+ for i in range(input_tensor.size(0)):
101
+ original_scores.append(outputs[i, target_category[i]])
102
+ original_scores = np.float32(original_scores)
103
+
104
+ self.set_ablation_layers()
105
+
106
+ if hasattr(self, "batch_size"):
107
+ BATCH_SIZE = self.batch_size
108
+ else:
109
+ BATCH_SIZE = 32
110
+
111
+ number_of_channels = activations.shape[1]
112
+ weights = []
113
+
114
+ with torch.no_grad():
115
+ # Iterate over the input batch
116
+ for tensor, category in zip(input_tensor, target_category):
117
+ batch_tensor = tensor.repeat(BATCH_SIZE, 1, 1, 1)
118
+ for i in tqdm.tqdm(range(0, number_of_channels, BATCH_SIZE)):
119
+ self.set_ablation_layer_batch_indices(
120
+ list(range(i, i + BATCH_SIZE)))
121
+
122
+ if i + BATCH_SIZE > number_of_channels:
123
+ keep = number_of_channels - i
124
+ batch_tensor = batch_tensor[:keep]
125
+ self.trim_ablation_layer_batch_indices(self, keep)
126
+ score = self.model(batch_tensor)[:, category].cpu().numpy()
127
+ weights.extend(score)
128
+
129
+ weights = np.float32(weights)
130
+ weights = weights.reshape(activations.shape[:2])
131
+ original_scores = original_scores[:, None]
132
+ weights = (original_scores - weights) / original_scores
133
+
134
+ # replace the model back to the original state
135
+ self.unset_ablation_layers()
136
+ return weights
pytorch_grad_cam/ablation_layer.py ADDED
@@ -0,0 +1,155 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from collections import OrderedDict
3
+ import numpy as np
4
+ from pytorch_grad_cam.utils.svd_on_activations import get_2d_projection
5
+
6
+
7
+ class AblationLayer(torch.nn.Module):
8
+ def __init__(self):
9
+ super(AblationLayer, self).__init__()
10
+
11
+ def objectiveness_mask_from_svd(self, activations, threshold=0.01):
12
+ """ Experimental method to get a binary mask to compare if the activation is worth ablating.
13
+ The idea is to apply the EigenCAM method by doing PCA on the activations.
14
+ Then we create a binary mask by comparing to a low threshold.
15
+ Areas that are masked out, are probably not interesting anyway.
16
+ """
17
+
18
+ projection = get_2d_projection(activations[None, :])[0, :]
19
+ projection = np.abs(projection)
20
+ projection = projection - projection.min()
21
+ projection = projection / projection.max()
22
+ projection = projection > threshold
23
+ return projection
24
+
25
+ def activations_to_be_ablated(
26
+ self,
27
+ activations,
28
+ ratio_channels_to_ablate=1.0):
29
+ """ Experimental method to get a binary mask to compare if the activation is worth ablating.
30
+ Create a binary CAM mask with objectiveness_mask_from_svd.
31
+ Score each Activation channel, by seeing how much of its values are inside the mask.
32
+ Then keep the top channels.
33
+
34
+ """
35
+ if ratio_channels_to_ablate == 1.0:
36
+ self.indices = np.int32(range(activations.shape[0]))
37
+ return self.indices
38
+
39
+ projection = self.objectiveness_mask_from_svd(activations)
40
+
41
+ scores = []
42
+ for channel in activations:
43
+ normalized = np.abs(channel)
44
+ normalized = normalized - normalized.min()
45
+ normalized = normalized / np.max(normalized)
46
+ score = (projection * normalized).sum() / normalized.sum()
47
+ scores.append(score)
48
+ scores = np.float32(scores)
49
+
50
+ indices = list(np.argsort(scores))
51
+ high_score_indices = indices[::-
52
+ 1][: int(len(indices) *
53
+ ratio_channels_to_ablate)]
54
+ low_score_indices = indices[: int(
55
+ len(indices) * ratio_channels_to_ablate)]
56
+ self.indices = np.int32(high_score_indices + low_score_indices)
57
+ return self.indices
58
+
59
+ def set_next_batch(
60
+ self,
61
+ input_batch_index,
62
+ activations,
63
+ num_channels_to_ablate):
64
+ """ This creates the next batch of activations from the layer.
65
+ Just take corresponding batch member from activations, and repeat it num_channels_to_ablate times.
66
+ """
67
+ self.activations = activations[input_batch_index, :, :, :].clone(
68
+ ).unsqueeze(0).repeat(num_channels_to_ablate, 1, 1, 1)
69
+
70
+ def __call__(self, x):
71
+ output = self.activations
72
+ for i in range(output.size(0)):
73
+ # Commonly the minimum activation will be 0,
74
+ # And then it makes sense to zero it out.
75
+ # However depending on the architecture,
76
+ # If the values can be negative, we use very negative values
77
+ # to perform the ablation, deviating from the paper.
78
+ if torch.min(output) == 0:
79
+ output[i, self.indices[i], :] = 0
80
+ else:
81
+ ABLATION_VALUE = 1e7
82
+ output[i, self.indices[i], :] = torch.min(
83
+ output) - ABLATION_VALUE
84
+
85
+ return output
86
+
87
+
88
+ class AblationLayerVit(AblationLayer):
89
+ def __init__(self):
90
+ super(AblationLayerVit, self).__init__()
91
+
92
+ def __call__(self, x):
93
+ output = self.activations
94
+ output = output.transpose(1, len(output.shape) - 1)
95
+ for i in range(output.size(0)):
96
+
97
+ # Commonly the minimum activation will be 0,
98
+ # And then it makes sense to zero it out.
99
+ # However depending on the architecture,
100
+ # If the values can be negative, we use very negative values
101
+ # to perform the ablation, deviating from the paper.
102
+ if torch.min(output) == 0:
103
+ output[i, self.indices[i], :] = 0
104
+ else:
105
+ ABLATION_VALUE = 1e7
106
+ output[i, self.indices[i], :] = torch.min(
107
+ output) - ABLATION_VALUE
108
+
109
+ output = output.transpose(len(output.shape) - 1, 1)
110
+
111
+ return output
112
+
113
+ def set_next_batch(
114
+ self,
115
+ input_batch_index,
116
+ activations,
117
+ num_channels_to_ablate):
118
+ """ This creates the next batch of activations from the layer.
119
+ Just take corresponding batch member from activations, and repeat it num_channels_to_ablate times.
120
+ """
121
+ repeat_params = [num_channels_to_ablate] + \
122
+ len(activations.shape[:-1]) * [1]
123
+ self.activations = activations[input_batch_index, :, :].clone(
124
+ ).unsqueeze(0).repeat(*repeat_params)
125
+
126
+
127
+ class AblationLayerFasterRCNN(AblationLayer):
128
+ def __init__(self):
129
+ super(AblationLayerFasterRCNN, self).__init__()
130
+
131
+ def set_next_batch(
132
+ self,
133
+ input_batch_index,
134
+ activations,
135
+ num_channels_to_ablate):
136
+ """ Extract the next batch member from activations,
137
+ and repeat it num_channels_to_ablate times.
138
+ """
139
+ self.activations = OrderedDict()
140
+ for key, value in activations.items():
141
+ fpn_activation = value[input_batch_index,
142
+ :, :, :].clone().unsqueeze(0)
143
+ self.activations[key] = fpn_activation.repeat(
144
+ num_channels_to_ablate, 1, 1, 1)
145
+
146
+ def __call__(self, x):
147
+ result = self.activations
148
+ layers = {0: '0', 1: '1', 2: '2', 3: '3', 4: 'pool'}
149
+ num_channels_to_ablate = result['pool'].size(0)
150
+ for i in range(num_channels_to_ablate):
151
+ pyramid_layer = int(self.indices[i] / 256)
152
+ index_in_pyramid_layer = int(self.indices[i] % 256)
153
+ result[layers[pyramid_layer]][i,
154
+ index_in_pyramid_layer, :, :] = -1000
155
+ return result
pytorch_grad_cam/activations_and_gradients.py ADDED
@@ -0,0 +1,46 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ class ActivationsAndGradients:
2
+ """ Class for extracting activations and
3
+ registering gradients from targetted intermediate layers """
4
+
5
+ def __init__(self, model, target_layers, reshape_transform):
6
+ self.model = model
7
+ self.gradients = []
8
+ self.activations = []
9
+ self.reshape_transform = reshape_transform
10
+ self.handles = []
11
+ for target_layer in target_layers:
12
+ self.handles.append(
13
+ target_layer.register_forward_hook(self.save_activation))
14
+ # Because of https://github.com/pytorch/pytorch/issues/61519,
15
+ # we don't use backward hook to record gradients.
16
+ self.handles.append(
17
+ target_layer.register_forward_hook(self.save_gradient))
18
+
19
+ def save_activation(self, module, input, output):
20
+ activation = output
21
+
22
+ if self.reshape_transform is not None:
23
+ activation = self.reshape_transform(activation)
24
+ self.activations.append(activation.cpu().detach())
25
+
26
+ def save_gradient(self, module, input, output):
27
+ if not hasattr(output, "requires_grad") or not output.requires_grad:
28
+ # You can only register hooks on tensor requires grad.
29
+ return
30
+
31
+ # Gradients are computed in reverse order
32
+ def _store_grad(grad):
33
+ if self.reshape_transform is not None:
34
+ grad = self.reshape_transform(grad)
35
+ self.gradients = [grad.cpu().detach()] + self.gradients
36
+
37
+ output.register_hook(_store_grad)
38
+
39
+ def __call__(self, x):
40
+ self.gradients = []
41
+ self.activations = []
42
+ return self.model(x)
43
+
44
+ def release(self):
45
+ for handle in self.handles:
46
+ handle.remove()
pytorch_grad_cam/base_cam.py ADDED
@@ -0,0 +1,205 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import torch
3
+ import ttach as tta
4
+ from typing import Callable, List, Tuple
5
+ from pytorch_grad_cam.activations_and_gradients import ActivationsAndGradients
6
+ from pytorch_grad_cam.utils.svd_on_activations import get_2d_projection
7
+ from pytorch_grad_cam.utils.image import scale_cam_image
8
+ from pytorch_grad_cam.utils.model_targets import ClassifierOutputTarget
9
+
10
+
11
+ class BaseCAM:
12
+ def __init__(self,
13
+ model: torch.nn.Module,
14
+ target_layers: List[torch.nn.Module],
15
+ use_cuda: bool = False,
16
+ reshape_transform: Callable = None,
17
+ compute_input_gradient: bool = False,
18
+ uses_gradients: bool = True) -> None:
19
+ self.model = model.eval()
20
+ self.target_layers = target_layers
21
+ self.cuda = use_cuda
22
+ if self.cuda:
23
+ self.model = model.cuda()
24
+ self.reshape_transform = reshape_transform
25
+ self.compute_input_gradient = compute_input_gradient
26
+ self.uses_gradients = uses_gradients
27
+ self.activations_and_grads = ActivationsAndGradients(
28
+ self.model, target_layers, reshape_transform)
29
+
30
+ """ Get a vector of weights for every channel in the target layer.
31
+ Methods that return weights channels,
32
+ will typically need to only implement this function. """
33
+
34
+ def get_cam_weights(self,
35
+ input_tensor: torch.Tensor,
36
+ target_layers: List[torch.nn.Module],
37
+ targets: List[torch.nn.Module],
38
+ activations: torch.Tensor,
39
+ grads: torch.Tensor) -> np.ndarray:
40
+ raise Exception("Not Implemented")
41
+
42
+ def get_cam_image(self,
43
+ input_tensor: torch.Tensor,
44
+ target_layer: torch.nn.Module,
45
+ targets: List[torch.nn.Module],
46
+ activations: torch.Tensor,
47
+ grads: torch.Tensor,
48
+ eigen_smooth: bool = False) -> np.ndarray:
49
+
50
+ weights = self.get_cam_weights(input_tensor,
51
+ target_layer,
52
+ targets,
53
+ activations,
54
+ grads)
55
+ weighted_activations = weights[:, :, None, None] * activations
56
+ if eigen_smooth:
57
+ cam = get_2d_projection(weighted_activations)
58
+ else:
59
+ cam = weighted_activations.sum(axis=1)
60
+ return cam
61
+
62
+ def forward(self,
63
+ input_tensor: torch.Tensor,
64
+ targets: List[torch.nn.Module],
65
+ eigen_smooth: bool = False) -> np.ndarray:
66
+
67
+ if self.cuda:
68
+ input_tensor = input_tensor.cuda()
69
+
70
+ if self.compute_input_gradient:
71
+ input_tensor = torch.autograd.Variable(input_tensor,
72
+ requires_grad=True)
73
+
74
+ outputs = self.activations_and_grads(input_tensor)
75
+ outputs = outputs.pooler_output # Only for ViT-GPT2 or any other VisionEncoderDecoder model
76
+ print(outputs)
77
+ if targets is None:
78
+ target_categories = np.argmax(outputs.cpu().data.numpy(), axis=-1) #np.argmax(outputs.cpu().data.numpy(), axis=-1)
79
+ targets = [ClassifierOutputTarget(
80
+ category) for category in target_categories]
81
+
82
+ if self.uses_gradients:
83
+ self.model.zero_grad()
84
+ loss = sum([target(output)
85
+ for target, output in zip(targets, outputs)])
86
+ loss.backward(retain_graph=True)
87
+
88
+ # In most of the saliency attribution papers, the saliency is
89
+ # computed with a single target layer.
90
+ # Commonly it is the last convolutional layer.
91
+ # Here we support passing a list with multiple target layers.
92
+ # It will compute the saliency image for every image,
93
+ # and then aggregate them (with a default mean aggregation).
94
+ # This gives you more flexibility in case you just want to
95
+ # use all conv layers for example, all Batchnorm layers,
96
+ # or something else.
97
+ cam_per_layer = self.compute_cam_per_layer(input_tensor,
98
+ targets,
99
+ eigen_smooth)
100
+ return self.aggregate_multi_layers(cam_per_layer)
101
+
102
+ def get_target_width_height(self,
103
+ input_tensor: torch.Tensor) -> Tuple[int, int]:
104
+ width, height = input_tensor.size(-1), input_tensor.size(-2)
105
+ return width, height
106
+
107
+ def compute_cam_per_layer(
108
+ self,
109
+ input_tensor: torch.Tensor,
110
+ targets: List[torch.nn.Module],
111
+ eigen_smooth: bool) -> np.ndarray:
112
+ activations_list = [a.cpu().data.numpy()
113
+ for a in self.activations_and_grads.activations]
114
+ grads_list = [g.cpu().data.numpy()
115
+ for g in self.activations_and_grads.gradients]
116
+ target_size = self.get_target_width_height(input_tensor)
117
+
118
+ cam_per_target_layer = []
119
+ # Loop over the saliency image from every layer
120
+ for i in range(len(self.target_layers)):
121
+ target_layer = self.target_layers[i]
122
+ layer_activations = None
123
+ layer_grads = None
124
+ if i < len(activations_list):
125
+ layer_activations = activations_list[i]
126
+ if i < len(grads_list):
127
+ layer_grads = grads_list[i]
128
+
129
+ cam = self.get_cam_image(input_tensor,
130
+ target_layer,
131
+ targets,
132
+ layer_activations,
133
+ layer_grads,
134
+ eigen_smooth)
135
+ cam = np.maximum(cam, 0)
136
+ scaled = scale_cam_image(cam, target_size)
137
+ cam_per_target_layer.append(scaled[:, None, :])
138
+
139
+ return cam_per_target_layer
140
+
141
+ def aggregate_multi_layers(
142
+ self,
143
+ cam_per_target_layer: np.ndarray) -> np.ndarray:
144
+ cam_per_target_layer = np.concatenate(cam_per_target_layer, axis=1)
145
+ cam_per_target_layer = np.maximum(cam_per_target_layer, 0)
146
+ result = np.mean(cam_per_target_layer, axis=1)
147
+ return scale_cam_image(result)
148
+
149
+ def forward_augmentation_smoothing(self,
150
+ input_tensor: torch.Tensor,
151
+ targets: List[torch.nn.Module],
152
+ eigen_smooth: bool = False) -> np.ndarray:
153
+ transforms = tta.Compose(
154
+ [
155
+ tta.HorizontalFlip(),
156
+ tta.Multiply(factors=[0.9, 1, 1.1]),
157
+ ]
158
+ )
159
+ cams = []
160
+ for transform in transforms:
161
+ augmented_tensor = transform.augment_image(input_tensor)
162
+ cam = self.forward(augmented_tensor,
163
+ targets,
164
+ eigen_smooth)
165
+
166
+ # The ttach library expects a tensor of size BxCxHxW
167
+ cam = cam[:, None, :, :]
168
+ cam = torch.from_numpy(cam)
169
+ cam = transform.deaugment_mask(cam)
170
+
171
+ # Back to numpy float32, HxW
172
+ cam = cam.numpy()
173
+ cam = cam[:, 0, :, :]
174
+ cams.append(cam)
175
+
176
+ cam = np.mean(np.float32(cams), axis=0)
177
+ return cam
178
+
179
+ def __call__(self,
180
+ input_tensor: torch.Tensor,
181
+ targets: List[torch.nn.Module] = None,
182
+ aug_smooth: bool = False,
183
+ eigen_smooth: bool = False) -> np.ndarray:
184
+
185
+ # Smooth the CAM result with test time augmentation
186
+ if aug_smooth is True:
187
+ return self.forward_augmentation_smoothing(
188
+ input_tensor, targets, eigen_smooth)
189
+
190
+ return self.forward(input_tensor,
191
+ targets, eigen_smooth)
192
+
193
+ def __del__(self):
194
+ self.activations_and_grads.release()
195
+
196
+ def __enter__(self):
197
+ return self
198
+
199
+ def __exit__(self, exc_type, exc_value, exc_tb):
200
+ self.activations_and_grads.release()
201
+ if isinstance(exc_value, IndexError):
202
+ # Handle IndexError here...
203
+ print(
204
+ f"An exception occurred in CAM with block: {exc_type}. Message: {exc_value}")
205
+ return True
pytorch_grad_cam/cam_mult_image.py ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import numpy as np
3
+ from typing import List, Callable
4
+ from pytorch_grad_cam.metrics.perturbation_confidence import PerturbationConfidenceMetric
5
+
6
+
7
+ def multiply_tensor_with_cam(input_tensor: torch.Tensor,
8
+ cam: torch.Tensor):
9
+ """ Multiply an input tensor (after normalization)
10
+ with a pixel attribution map
11
+ """
12
+ return input_tensor * cam
13
+
14
+
15
+ class CamMultImageConfidenceChange(PerturbationConfidenceMetric):
16
+ def __init__(self):
17
+ super(CamMultImageConfidenceChange,
18
+ self).__init__(multiply_tensor_with_cam)
19
+
20
+
21
+ class DropInConfidence(CamMultImageConfidenceChange):
22
+ def __init__(self):
23
+ super(DropInConfidence, self).__init__()
24
+
25
+ def __call__(self, *args, **kwargs):
26
+ scores = super(DropInConfidence, self).__call__(*args, **kwargs)
27
+ scores = -scores
28
+ return np.maximum(scores, 0)
29
+
30
+
31
+ class IncreaseInConfidence(CamMultImageConfidenceChange):
32
+ def __init__(self):
33
+ super(IncreaseInConfidence, self).__init__()
34
+
35
+ def __call__(self, *args, **kwargs):
36
+ scores = super(IncreaseInConfidence, self).__call__(*args, **kwargs)
37
+ return np.float32(scores > 0)
pytorch_grad_cam/eigen_cam.py ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from pytorch_grad_cam.base_cam import BaseCAM
2
+ from pytorch_grad_cam.utils.svd_on_activations import get_2d_projection
3
+
4
+ # https://arxiv.org/abs/2008.00299
5
+
6
+
7
+ class EigenCAM(BaseCAM):
8
+ def __init__(self, model, target_layers, use_cuda=False,
9
+ reshape_transform=None):
10
+ super(EigenCAM, self).__init__(model,
11
+ target_layers,
12
+ use_cuda,
13
+ reshape_transform,
14
+ uses_gradients=False)
15
+
16
+ def get_cam_image(self,
17
+ input_tensor,
18
+ target_layer,
19
+ target_category,
20
+ activations,
21
+ grads,
22
+ eigen_smooth):
23
+ return get_2d_projection(activations)
pytorch_grad_cam/eigen_grad_cam.py ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from pytorch_grad_cam.base_cam import BaseCAM
2
+ from pytorch_grad_cam.utils.svd_on_activations import get_2d_projection
3
+
4
+ # Like Eigen CAM: https://arxiv.org/abs/2008.00299
5
+ # But multiply the activations x gradients
6
+
7
+
8
+ class EigenGradCAM(BaseCAM):
9
+ def __init__(self, model, target_layers, use_cuda=False,
10
+ reshape_transform=None):
11
+ super(EigenGradCAM, self).__init__(model, target_layers, use_cuda,
12
+ reshape_transform)
13
+
14
+ def get_cam_image(self,
15
+ input_tensor,
16
+ target_layer,
17
+ target_category,
18
+ activations,
19
+ grads,
20
+ eigen_smooth):
21
+ return get_2d_projection(grads * activations)
pytorch_grad_cam/feature_factorization/__init__.py ADDED
File without changes
pytorch_grad_cam/feature_factorization/__pycache__/__init__.cpython-39.pyc ADDED
Binary file (163 Bytes). View file
 
pytorch_grad_cam/feature_factorization/__pycache__/deep_feature_factorization.cpython-39.pyc ADDED
Binary file (4.73 kB). View file
 
pytorch_grad_cam/feature_factorization/deep_feature_factorization.py ADDED
@@ -0,0 +1,131 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ from PIL import Image
3
+ import torch
4
+ from typing import Callable, List, Tuple, Optional
5
+ from sklearn.decomposition import NMF
6
+ from pytorch_grad_cam.activations_and_gradients import ActivationsAndGradients
7
+ from pytorch_grad_cam.utils.image import scale_cam_image, create_labels_legend, show_factorization_on_image
8
+
9
+
10
+ def dff(activations: np.ndarray, n_components: int = 5):
11
+ """ Compute Deep Feature Factorization on a 2d Activations tensor.
12
+
13
+ :param activations: A numpy array of shape batch x channels x height x width
14
+ :param n_components: The number of components for the non negative matrix factorization
15
+ :returns: A tuple of the concepts (a numpy array with shape channels x components),
16
+ and the explanation heatmaps (a numpy arary with shape batch x height x width)
17
+ """
18
+
19
+ batch_size, channels, h, w = activations.shape
20
+ reshaped_activations = activations.transpose((1, 0, 2, 3))
21
+ reshaped_activations[np.isnan(reshaped_activations)] = 0
22
+ reshaped_activations = reshaped_activations.reshape(
23
+ reshaped_activations.shape[0], -1)
24
+ offset = reshaped_activations.min(axis=-1)
25
+ reshaped_activations = reshaped_activations - offset[:, None]
26
+
27
+ model = NMF(n_components=n_components, init='random', random_state=0)
28
+ W = model.fit_transform(reshaped_activations)
29
+ H = model.components_
30
+ concepts = W + offset[:, None]
31
+ explanations = H.reshape(n_components, batch_size, h, w)
32
+ explanations = explanations.transpose((1, 0, 2, 3))
33
+ return concepts, explanations
34
+
35
+
36
+ class DeepFeatureFactorization:
37
+ """ Deep Feature Factorization: https://arxiv.org/abs/1806.10206
38
+ This gets a model andcomputes the 2D activations for a target layer,
39
+ and computes Non Negative Matrix Factorization on the activations.
40
+
41
+ Optionally it runs a computation on the concept embeddings,
42
+ like running a classifier on them.
43
+
44
+ The explanation heatmaps are scalled to the range [0, 1]
45
+ and to the input tensor width and height.
46
+ """
47
+
48
+ def __init__(self,
49
+ model: torch.nn.Module,
50
+ target_layer: torch.nn.Module,
51
+ reshape_transform: Callable = None,
52
+ computation_on_concepts=None
53
+ ):
54
+ self.model = model
55
+ self.computation_on_concepts = computation_on_concepts
56
+ self.activations_and_grads = ActivationsAndGradients(
57
+ self.model, [target_layer], reshape_transform)
58
+
59
+ def __call__(self,
60
+ input_tensor: torch.Tensor,
61
+ n_components: int = 16):
62
+ batch_size, channels, h, w = input_tensor.size()
63
+ _ = self.activations_and_grads(input_tensor)
64
+
65
+ with torch.no_grad():
66
+ activations = self.activations_and_grads.activations[0].cpu(
67
+ ).numpy()
68
+
69
+ concepts, explanations = dff(activations, n_components=n_components)
70
+
71
+ processed_explanations = []
72
+
73
+ for batch in explanations:
74
+ processed_explanations.append(scale_cam_image(batch, (w, h)))
75
+
76
+ if self.computation_on_concepts:
77
+ with torch.no_grad():
78
+ concept_tensors = torch.from_numpy(
79
+ np.float32(concepts).transpose((1, 0)))
80
+ concept_outputs = self.computation_on_concepts(
81
+ concept_tensors).cpu().numpy()
82
+ return concepts, processed_explanations, concept_outputs
83
+ else:
84
+ return concepts, processed_explanations
85
+
86
+ def __del__(self):
87
+ self.activations_and_grads.release()
88
+
89
+ def __exit__(self, exc_type, exc_value, exc_tb):
90
+ self.activations_and_grads.release()
91
+ if isinstance(exc_value, IndexError):
92
+ # Handle IndexError here...
93
+ print(
94
+ f"An exception occurred in ActivationSummary with block: {exc_type}. Message: {exc_value}")
95
+ return True
96
+
97
+
98
+ def run_dff_on_image(model: torch.nn.Module,
99
+ target_layer: torch.nn.Module,
100
+ classifier: torch.nn.Module,
101
+ img_pil: Image,
102
+ img_tensor: torch.Tensor,
103
+ reshape_transform=Optional[Callable],
104
+ n_components: int = 5,
105
+ top_k: int = 2) -> np.ndarray:
106
+ """ Helper function to create a Deep Feature Factorization visualization for a single image.
107
+ TBD: Run this on a batch with several images.
108
+ """
109
+ rgb_img_float = np.array(img_pil) / 255
110
+ dff = DeepFeatureFactorization(model=model,
111
+ reshape_transform=reshape_transform,
112
+ target_layer=target_layer,
113
+ computation_on_concepts=classifier)
114
+
115
+ concepts, batch_explanations, concept_outputs = dff(
116
+ img_tensor[None, :], n_components)
117
+
118
+ concept_outputs = torch.softmax(
119
+ torch.from_numpy(concept_outputs),
120
+ axis=-1).numpy()
121
+ concept_label_strings = create_labels_legend(concept_outputs,
122
+ labels=model.config.id2label,
123
+ top_k=top_k)
124
+ visualization = show_factorization_on_image(
125
+ rgb_img_float,
126
+ batch_explanations[0],
127
+ image_weight=0.3,
128
+ concept_labels=concept_label_strings)
129
+
130
+ result = np.hstack((np.array(img_pil), visualization))
131
+ return result
pytorch_grad_cam/fullgrad_cam.py ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import torch
3
+ from pytorch_grad_cam.base_cam import BaseCAM
4
+ from pytorch_grad_cam.utils.find_layers import find_layer_predicate_recursive
5
+ from pytorch_grad_cam.utils.svd_on_activations import get_2d_projection
6
+ from pytorch_grad_cam.utils.image import scale_accross_batch_and_channels, scale_cam_image
7
+
8
+ # https://arxiv.org/abs/1905.00780
9
+
10
+
11
+ class FullGrad(BaseCAM):
12
+ def __init__(self, model, target_layers, use_cuda=False,
13
+ reshape_transform=None):
14
+ if len(target_layers) > 0:
15
+ print(
16
+ "Warning: target_layers is ignored in FullGrad. All bias layers will be used instead")
17
+
18
+ def layer_with_2D_bias(layer):
19
+ bias_target_layers = [torch.nn.Conv2d, torch.nn.BatchNorm2d]
20
+ if type(layer) in bias_target_layers and layer.bias is not None:
21
+ return True
22
+ return False
23
+ target_layers = find_layer_predicate_recursive(
24
+ model, layer_with_2D_bias)
25
+ super(
26
+ FullGrad,
27
+ self).__init__(
28
+ model,
29
+ target_layers,
30
+ use_cuda,
31
+ reshape_transform,
32
+ compute_input_gradient=True)
33
+ self.bias_data = [self.get_bias_data(
34
+ layer).cpu().numpy() for layer in target_layers]
35
+
36
+ def get_bias_data(self, layer):
37
+ # Borrowed from official paper impl:
38
+ # https://github.com/idiap/fullgrad-saliency/blob/master/saliency/tensor_extractor.py#L47
39
+ if isinstance(layer, torch.nn.BatchNorm2d):
40
+ bias = - (layer.running_mean * layer.weight
41
+ / torch.sqrt(layer.running_var + layer.eps)) + layer.bias
42
+ return bias.data
43
+ else:
44
+ return layer.bias.data
45
+
46
+ def compute_cam_per_layer(
47
+ self,
48
+ input_tensor,
49
+ target_category,
50
+ eigen_smooth):
51
+ input_grad = input_tensor.grad.data.cpu().numpy()
52
+ grads_list = [g.cpu().data.numpy() for g in
53
+ self.activations_and_grads.gradients]
54
+ cam_per_target_layer = []
55
+ target_size = self.get_target_width_height(input_tensor)
56
+
57
+ gradient_multiplied_input = input_grad * input_tensor.data.cpu().numpy()
58
+ gradient_multiplied_input = np.abs(gradient_multiplied_input)
59
+ gradient_multiplied_input = scale_accross_batch_and_channels(
60
+ gradient_multiplied_input,
61
+ target_size)
62
+ cam_per_target_layer.append(gradient_multiplied_input)
63
+
64
+ # Loop over the saliency image from every layer
65
+ assert(len(self.bias_data) == len(grads_list))
66
+ for bias, grads in zip(self.bias_data, grads_list):
67
+ bias = bias[None, :, None, None]
68
+ # In the paper they take the absolute value,
69
+ # but possibily taking only the positive gradients will work
70
+ # better.
71
+ bias_grad = np.abs(bias * grads)
72
+ result = scale_accross_batch_and_channels(
73
+ bias_grad, target_size)
74
+ result = np.sum(result, axis=1)
75
+ cam_per_target_layer.append(result[:, None, :])
76
+ cam_per_target_layer = np.concatenate(cam_per_target_layer, axis=1)
77
+ if eigen_smooth:
78
+ # Resize to a smaller image, since this method typically has a very large number of channels,
79
+ # and then consumes a lot of memory
80
+ cam_per_target_layer = scale_accross_batch_and_channels(
81
+ cam_per_target_layer, (target_size[0] // 8, target_size[1] // 8))
82
+ cam_per_target_layer = get_2d_projection(cam_per_target_layer)
83
+ cam_per_target_layer = cam_per_target_layer[:, None, :, :]
84
+ cam_per_target_layer = scale_accross_batch_and_channels(
85
+ cam_per_target_layer,
86
+ target_size)
87
+ else:
88
+ cam_per_target_layer = np.sum(
89
+ cam_per_target_layer, axis=1)[:, None, :]
90
+
91
+ return cam_per_target_layer
92
+
93
+ def aggregate_multi_layers(self, cam_per_target_layer):
94
+ result = np.sum(cam_per_target_layer, axis=1)
95
+ return scale_cam_image(result)
pytorch_grad_cam/grad_cam.py ADDED
@@ -0,0 +1,22 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ from pytorch_grad_cam.base_cam import BaseCAM
3
+
4
+
5
+ class GradCAM(BaseCAM):
6
+ def __init__(self, model, target_layers, use_cuda=False,
7
+ reshape_transform=None):
8
+ super(
9
+ GradCAM,
10
+ self).__init__(
11
+ model,
12
+ target_layers,
13
+ use_cuda,
14
+ reshape_transform)
15
+
16
+ def get_cam_weights(self,
17
+ input_tensor,
18
+ target_layer,
19
+ target_category,
20
+ activations,
21
+ grads):
22
+ return np.mean(grads, axis=(2, 3))
pytorch_grad_cam/grad_cam_elementwise.py ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ from pytorch_grad_cam.base_cam import BaseCAM
3
+ from pytorch_grad_cam.utils.svd_on_activations import get_2d_projection
4
+
5
+
6
+ class GradCAMElementWise(BaseCAM):
7
+ def __init__(self, model, target_layers, use_cuda=False,
8
+ reshape_transform=None):
9
+ super(
10
+ GradCAMElementWise,
11
+ self).__init__(
12
+ model,
13
+ target_layers,
14
+ use_cuda,
15
+ reshape_transform)
16
+
17
+ def get_cam_image(self,
18
+ input_tensor,
19
+ target_layer,
20
+ target_category,
21
+ activations,
22
+ grads,
23
+ eigen_smooth):
24
+ elementwise_activations = np.maximum(grads * activations, 0)
25
+
26
+ if eigen_smooth:
27
+ cam = get_2d_projection(elementwise_activations)
28
+ else:
29
+ cam = elementwise_activations.sum(axis=1)
30
+ return cam
pytorch_grad_cam/grad_cam_plusplus.py ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ from pytorch_grad_cam.base_cam import BaseCAM
3
+
4
+ # https://arxiv.org/abs/1710.11063
5
+
6
+
7
+ class GradCAMPlusPlus(BaseCAM):
8
+ def __init__(self, model, target_layers, use_cuda=False,
9
+ reshape_transform=None):
10
+ super(GradCAMPlusPlus, self).__init__(model, target_layers, use_cuda,
11
+ reshape_transform)
12
+
13
+ def get_cam_weights(self,
14
+ input_tensor,
15
+ target_layers,
16
+ target_category,
17
+ activations,
18
+ grads):
19
+ grads_power_2 = grads**2
20
+ grads_power_3 = grads_power_2 * grads
21
+ # Equation 19 in https://arxiv.org/abs/1710.11063
22
+ sum_activations = np.sum(activations, axis=(2, 3))
23
+ eps = 0.000001
24
+ aij = grads_power_2 / (2 * grads_power_2 +
25
+ sum_activations[:, :, None, None] * grads_power_3 + eps)
26
+ # Now bring back the ReLU from eq.7 in the paper,
27
+ # And zero out aijs where the activations are 0
28
+ aij = np.where(grads != 0, aij, 0)
29
+
30
+ weights = np.maximum(grads, 0) * aij
31
+ weights = np.sum(weights, axis=(2, 3))
32
+ return weights
pytorch_grad_cam/guided_backprop.py ADDED
@@ -0,0 +1,100 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import torch
3
+ from torch.autograd import Function
4
+ from pytorch_grad_cam.utils.find_layers import replace_all_layer_type_recursive
5
+
6
+
7
+ class GuidedBackpropReLU(Function):
8
+ @staticmethod
9
+ def forward(self, input_img):
10
+ positive_mask = (input_img > 0).type_as(input_img)
11
+ output = torch.addcmul(
12
+ torch.zeros(
13
+ input_img.size()).type_as(input_img),
14
+ input_img,
15
+ positive_mask)
16
+ self.save_for_backward(input_img, output)
17
+ return output
18
+
19
+ @staticmethod
20
+ def backward(self, grad_output):
21
+ input_img, output = self.saved_tensors
22
+ grad_input = None
23
+
24
+ positive_mask_1 = (input_img > 0).type_as(grad_output)
25
+ positive_mask_2 = (grad_output > 0).type_as(grad_output)
26
+ grad_input = torch.addcmul(
27
+ torch.zeros(
28
+ input_img.size()).type_as(input_img),
29
+ torch.addcmul(
30
+ torch.zeros(
31
+ input_img.size()).type_as(input_img),
32
+ grad_output,
33
+ positive_mask_1),
34
+ positive_mask_2)
35
+ return grad_input
36
+
37
+
38
+ class GuidedBackpropReLUasModule(torch.nn.Module):
39
+ def __init__(self):
40
+ super(GuidedBackpropReLUasModule, self).__init__()
41
+
42
+ def forward(self, input_img):
43
+ return GuidedBackpropReLU.apply(input_img)
44
+
45
+
46
+ class GuidedBackpropReLUModel:
47
+ def __init__(self, model, use_cuda):
48
+ self.model = model
49
+ self.model.eval()
50
+ self.cuda = use_cuda
51
+ if self.cuda:
52
+ self.model = self.model.cuda()
53
+
54
+ def forward(self, input_img):
55
+ return self.model(input_img)
56
+
57
+ def recursive_replace_relu_with_guidedrelu(self, module_top):
58
+
59
+ for idx, module in module_top._modules.items():
60
+ self.recursive_replace_relu_with_guidedrelu(module)
61
+ if module.__class__.__name__ == 'ReLU':
62
+ module_top._modules[idx] = GuidedBackpropReLU.apply
63
+ print("b")
64
+
65
+ def recursive_replace_guidedrelu_with_relu(self, module_top):
66
+ try:
67
+ for idx, module in module_top._modules.items():
68
+ self.recursive_replace_guidedrelu_with_relu(module)
69
+ if module == GuidedBackpropReLU.apply:
70
+ module_top._modules[idx] = torch.nn.ReLU()
71
+ except BaseException:
72
+ pass
73
+
74
+ def __call__(self, input_img, target_category=None):
75
+ replace_all_layer_type_recursive(self.model,
76
+ torch.nn.ReLU,
77
+ GuidedBackpropReLUasModule())
78
+
79
+ if self.cuda:
80
+ input_img = input_img.cuda()
81
+
82
+ input_img = input_img.requires_grad_(True)
83
+
84
+ output = self.forward(input_img)
85
+
86
+ if target_category is None:
87
+ target_category = np.argmax(output.cpu().data.numpy())
88
+
89
+ loss = output[0, target_category]
90
+ loss.backward(retain_graph=True)
91
+
92
+ output = input_img.grad.cpu().data.numpy()
93
+ output = output[0, :, :, :]
94
+ output = output.transpose((1, 2, 0))
95
+
96
+ replace_all_layer_type_recursive(self.model,
97
+ GuidedBackpropReLUasModule,
98
+ torch.nn.ReLU())
99
+
100
+ return output
pytorch_grad_cam/hirescam.py ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ from pytorch_grad_cam.base_cam import BaseCAM
3
+ from pytorch_grad_cam.utils.svd_on_activations import get_2d_projection
4
+
5
+
6
+ class HiResCAM(BaseCAM):
7
+ def __init__(self, model, target_layers, use_cuda=False,
8
+ reshape_transform=None):
9
+ super(
10
+ HiResCAM,
11
+ self).__init__(
12
+ model,
13
+ target_layers,
14
+ use_cuda,
15
+ reshape_transform)
16
+
17
+ def get_cam_image(self,
18
+ input_tensor,
19
+ target_layer,
20
+ target_category,
21
+ activations,
22
+ grads,
23
+ eigen_smooth):
24
+ elementwise_activations = grads * activations
25
+
26
+ if eigen_smooth:
27
+ print(
28
+ "Warning: HiResCAM's faithfulness guarantees do not hold if smoothing is applied")
29
+ cam = get_2d_projection(elementwise_activations)
30
+ else:
31
+ cam = elementwise_activations.sum(axis=1)
32
+ return cam
pytorch_grad_cam/layer_cam.py ADDED
@@ -0,0 +1,36 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ from pytorch_grad_cam.base_cam import BaseCAM
3
+ from pytorch_grad_cam.utils.svd_on_activations import get_2d_projection
4
+
5
+ # https://ieeexplore.ieee.org/document/9462463
6
+
7
+
8
+ class LayerCAM(BaseCAM):
9
+ def __init__(
10
+ self,
11
+ model,
12
+ target_layers,
13
+ use_cuda=False,
14
+ reshape_transform=None):
15
+ super(
16
+ LayerCAM,
17
+ self).__init__(
18
+ model,
19
+ target_layers,
20
+ use_cuda,
21
+ reshape_transform)
22
+
23
+ def get_cam_image(self,
24
+ input_tensor,
25
+ target_layer,
26
+ target_category,
27
+ activations,
28
+ grads,
29
+ eigen_smooth):
30
+ spatial_weighted_activations = np.maximum(grads, 0) * activations
31
+
32
+ if eigen_smooth:
33
+ cam = get_2d_projection(spatial_weighted_activations)
34
+ else:
35
+ cam = spatial_weighted_activations.sum(axis=1)
36
+ return cam