Spaces:
Sleeping
Sleeping
import gradio as gr | |
import sys | |
import pandas as pd | |
from transformers import AutoTokenizer, AutoModel, AutoConfig | |
# Add the current directory to the system path | |
metalatte_path = '.' | |
sys.path.insert(0, metalatte_path) | |
# Import the custom configuration and model | |
from configuration import MetaLATTEConfig | |
from modeling_metalatte import MultitaskProteinModel | |
AutoConfig.register("metalatte", MetaLATTEConfig) | |
AutoModel.register(MetaLATTEConfig, MultitaskProteinModel) | |
tokenizer = AutoTokenizer.from_pretrained("facebook/esm2_t33_650M_UR50D") | |
config = AutoConfig.from_pretrained("ChatterjeeLab/MetaLATTE") | |
model = AutoModel.from_pretrained("ChatterjeeLab/MetaLATTE", config=config) | |
def predict(sequence): | |
inputs = tokenizer(sequence, return_tensors="pt") | |
raw_probs, predictions = model.predict(**inputs) | |
id2label = config.id2label | |
results = {} | |
for i, pred in enumerate(predictions[0]): | |
metal = id2label[i] | |
probability = raw_probs[0][i].item() | |
results[metal] = '✓' if pred == 1 else '' | |
df = pd.DataFrame([results]) | |
return df | |
iface = gr.Interface( | |
fn=predict, | |
inputs=gr.Textbox(lines=3, placeholder="Enter protein sequence here..."), | |
outputs=gr.Dataframe(headers=list(config.id2label.values())), | |
title="MetaLATTE: Metal Binding Prediction", | |
description="Enter a protein sequence to predict its metal binding properties." | |
) | |
iface.launch() |