Spaces:
Sleeping
Sleeping
from transformers import PretrainedConfig | |
class MetaLATTEConfig(PretrainedConfig): | |
model_type = "metalatte" | |
def __init__( | |
self, | |
num_labels=15, | |
hidden_size=1280, | |
num_hidden_layers=33, | |
num_attention_heads=20, | |
intermediate_size=5120, | |
hidden_act="gelu", | |
hidden_dropout_prob=0.0, | |
attention_probs_dropout_prob=0.0, | |
max_position_embeddings=1026, | |
initializer_range=0.02, | |
layer_norm_eps=1e-5, | |
esm_model_name="facebook/esm2_t33_650M_UR50D", | |
num_layers_to_finetune=2, | |
num_linear_layers=3, | |
hidden_dim=512, | |
**kwargs | |
): | |
super().__init__(**kwargs) | |
self.num_labels = num_labels | |
self.hidden_size = hidden_size | |
self.num_hidden_layers = num_hidden_layers | |
self.num_attention_heads = num_attention_heads | |
self.intermediate_size = intermediate_size | |
self.hidden_act = hidden_act | |
self.hidden_dropout_prob = hidden_dropout_prob | |
self.attention_probs_dropout_prob = attention_probs_dropout_prob | |
self.max_position_embeddings = max_position_embeddings | |
self.initializer_range = initializer_range | |
self.layer_norm_eps = layer_norm_eps | |
self.esm_model_name = esm_model_name | |
self.num_layers_to_finetune = num_layers_to_finetune | |
self.num_linear_layers = num_linear_layers | |
self.hidden_dim = hidden_dim | |
def from_pretrained(cls, pretrained_model_name_or_path, **kwargs): | |
return super().from_pretrained(pretrained_model_name_or_path, **kwargs) | |
def save_pretrained(self, save_directory): | |
super().save_pretrained(save_directory) |