Update app.py
Browse files
app.py
CHANGED
@@ -4,206 +4,133 @@ import numpy as np
|
|
4 |
import os
|
5 |
import tempfile
|
6 |
from ultralytics import YOLO
|
7 |
-
import logging
|
8 |
|
9 |
-
#
|
10 |
-
|
11 |
-
|
|
|
|
|
|
|
12 |
|
13 |
# Load the Latex2Layout model
|
14 |
-
model_path = "latex2layout_object_detection_yolov8.pt"
|
15 |
try:
|
16 |
-
if not os.path.exists(model_path):
|
17 |
-
raise FileNotFoundError(f"Model file not found: {model_path}")
|
18 |
model = YOLO(model_path)
|
19 |
-
logger.info("Model loaded successfully")
|
20 |
except Exception as e:
|
21 |
-
|
22 |
-
raise
|
23 |
|
24 |
def detect_and_visualize(image):
|
25 |
"""
|
26 |
-
Perform
|
27 |
-
|
28 |
Args:
|
29 |
-
image: The uploaded image
|
30 |
-
|
31 |
Returns:
|
32 |
-
annotated_image: Image with
|
33 |
-
|
34 |
"""
|
|
|
|
|
|
|
|
|
|
|
35 |
try:
|
36 |
-
if image is None:
|
37 |
-
return None, "Error: No image uploaded."
|
38 |
-
|
39 |
-
# Validate image format and dimensions
|
40 |
-
if not isinstance(image, np.ndarray):
|
41 |
-
return None, "Error: Invalid image format."
|
42 |
-
|
43 |
-
if image.size == 0:
|
44 |
-
return None, "Error: Empty image."
|
45 |
-
|
46 |
-
# Run detection using the Latex2Layout model
|
47 |
results = model(image)
|
48 |
-
result = results[0]
|
49 |
-
|
50 |
-
# Create a copy of the image for visualization
|
51 |
-
annotated_image = image.copy()
|
52 |
-
layout_annotations = []
|
53 |
-
|
54 |
-
# Get image dimensions
|
55 |
-
img_height, img_width = image.shape[:2]
|
56 |
-
|
57 |
-
# Draw detection results
|
58 |
-
for box in result.boxes:
|
59 |
-
x1, y1, x2, y2 = map(int, box.xyxy[0].cpu().numpy())
|
60 |
-
conf = float(box.conf[0])
|
61 |
-
cls_id = int(box.cls[0])
|
62 |
-
cls_name = result.names[cls_id]
|
63 |
-
|
64 |
-
# Generate a color for each class
|
65 |
-
color = tuple(np.random.randint(0, 255, 3).tolist())
|
66 |
-
|
67 |
-
# Draw bounding box and label
|
68 |
-
cv2.rectangle(annotated_image, (x1, y1), (x2, y2), color, 2)
|
69 |
-
label = f'{cls_name} {conf:.2f}'
|
70 |
-
(label_width, label_height), _ = cv2.getTextSize(label, cv2.FONT_HERSHEY_SIMPLEX, 0.5, 1)
|
71 |
-
cv2.rectangle(annotated_image, (x1, y1-label_height-5), (x1+label_width, y1), color, -1)
|
72 |
-
cv2.putText(annotated_image, label, (x1, y1-5), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255), 1)
|
73 |
-
|
74 |
-
# Convert to YOLO format (normalized)
|
75 |
-
x_center = (x1 + x2) / (2 * img_width)
|
76 |
-
y_center = (y1 + y2) / (2 * img_height)
|
77 |
-
width = (x2 - x1) / img_width
|
78 |
-
height = (y2 - y1) / img_height
|
79 |
-
layout_annotations.append(f"{cls_id} {x_center:.6f} {y_center:.6f} {width:.6f} {height:.6f}")
|
80 |
-
|
81 |
-
return annotated_image, "\n".join(layout_annotations)
|
82 |
except Exception as e:
|
83 |
-
|
84 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
85 |
|
86 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
87 |
"""
|
88 |
-
Save
|
89 |
-
|
90 |
Args:
|
91 |
-
|
92 |
-
|
93 |
Returns:
|
94 |
-
file_path: Path to the saved annotation file
|
95 |
"""
|
|
|
|
|
|
|
|
|
|
|
96 |
try:
|
97 |
-
if not layout_annotations_str:
|
98 |
-
return None
|
99 |
-
|
100 |
temp_file = tempfile.NamedTemporaryFile(delete=False, suffix=".txt")
|
101 |
-
|
102 |
-
|
103 |
-
|
|
|
104 |
except Exception as e:
|
105 |
-
|
106 |
-
|
|
|
|
|
|
|
|
|
107 |
|
108 |
-
def load_example_image():
|
109 |
-
"""
|
110 |
-
Load an example image for demonstration.
|
111 |
-
|
112 |
-
Returns:
|
113 |
-
image: The loaded example image or None if loading fails
|
114 |
-
"""
|
115 |
-
try:
|
116 |
-
example_path = "example_image.jpg"
|
117 |
-
if not os.path.exists(example_path):
|
118 |
-
logger.error(f"Example image not found: {example_path}")
|
119 |
-
return None
|
120 |
-
return cv2.imread(example_path)
|
121 |
-
except Exception as e:
|
122 |
-
logger.error(f"Error loading example image: {str(e)}")
|
123 |
-
return None
|
124 |
-
|
125 |
-
# Custom CSS for styling
|
126 |
-
custom_css = """
|
127 |
-
.container { max-width: 1200px; margin: auto; }
|
128 |
-
.button-primary { background-color: #4CAF50; color: white; }
|
129 |
-
.button-secondary { background-color: #008CBA; color: white; }
|
130 |
-
.gr-image { border: 2px solid #ddd; border-radius: 5px; }
|
131 |
-
.gr-textbox { font-family: monospace; }
|
132 |
-
"""
|
133 |
-
|
134 |
-
# Create Gradio interface with enhanced styling
|
135 |
-
with gr.Blocks(
|
136 |
-
title="Latex2Layout Detection",
|
137 |
-
theme=gr.themes.Default(),
|
138 |
-
css=custom_css
|
139 |
-
) as demo:
|
140 |
-
# Header with instructions
|
141 |
-
gr.Markdown(
|
142 |
-
"""
|
143 |
-
# Latex2Layout Layout Detection
|
144 |
-
Upload an image to detect layout elements using the **Latex2Layout** model. View the annotated image and download the results in YOLO format.
|
145 |
-
"""
|
146 |
-
)
|
147 |
-
|
148 |
-
# Main layout with two columns
|
149 |
with gr.Row():
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
label="Upload Image",
|
154 |
-
type="numpy",
|
155 |
-
height=400,
|
156 |
-
elem_classes="gr-image"
|
157 |
-
)
|
158 |
-
detect_btn = gr.Button(
|
159 |
-
"Start Detection",
|
160 |
-
variant="primary",
|
161 |
-
elem_classes="button-primary"
|
162 |
-
)
|
163 |
-
gr.Markdown("**Tip**: Upload a clear image for optimal detection results.")
|
164 |
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
layout_annotations = gr.Textbox(
|
173 |
-
label="Layout Annotations (YOLO Format)",
|
174 |
-
lines=10,
|
175 |
-
max_lines=15,
|
176 |
-
elem_classes="gr-textbox"
|
177 |
-
)
|
178 |
-
download_btn = gr.Button(
|
179 |
-
"Download Annotations",
|
180 |
-
variant="secondary",
|
181 |
-
elem_classes="button-secondary"
|
182 |
-
)
|
183 |
-
download_file = gr.File(
|
184 |
-
label="Download File",
|
185 |
-
interactive=False
|
186 |
-
)
|
187 |
-
|
188 |
-
# Example image button (optional)
|
189 |
-
with gr.Row():
|
190 |
-
gr.Button("Load Example Image").click(
|
191 |
-
fn=load_example_image,
|
192 |
-
outputs=input_image
|
193 |
-
)
|
194 |
-
|
195 |
-
# Event handlers
|
196 |
detect_btn.click(
|
197 |
fn=detect_and_visualize,
|
198 |
-
inputs=input_image,
|
199 |
-
outputs=[output_image,
|
200 |
-
show_progress=True
|
201 |
)
|
202 |
-
|
203 |
download_btn.click(
|
204 |
-
fn=
|
205 |
-
inputs=
|
206 |
-
outputs=download_file
|
207 |
)
|
208 |
|
209 |
# Launch the application
|
|
|
4 |
import os
|
5 |
import tempfile
|
6 |
from ultralytics import YOLO
|
|
|
7 |
|
8 |
+
# Define the model path for Latex2Layout
|
9 |
+
model_path = "latex2layout_object_detection_yolov8.pt"
|
10 |
+
|
11 |
+
# Check if the model file exists before loading
|
12 |
+
if not os.path.exists(model_path):
|
13 |
+
raise FileNotFoundError(f"Model file not found at {model_path}")
|
14 |
|
15 |
# Load the Latex2Layout model
|
|
|
16 |
try:
|
|
|
|
|
17 |
model = YOLO(model_path)
|
|
|
18 |
except Exception as e:
|
19 |
+
raise RuntimeError(f"Failed to load Latex2Layout model: {e}")
|
|
|
20 |
|
21 |
def detect_and_visualize(image):
|
22 |
"""
|
23 |
+
Perform object detection on the uploaded image and visualize the results.
|
24 |
+
|
25 |
Args:
|
26 |
+
image: The uploaded image as a numpy array.
|
27 |
+
|
28 |
Returns:
|
29 |
+
annotated_image: Image with bounding boxes drawn.
|
30 |
+
yolo_annotations: Annotations in YOLO format as a string.
|
31 |
"""
|
32 |
+
# Validate input image
|
33 |
+
if image is None or not isinstance(image, np.ndarray):
|
34 |
+
raise ValueError("Invalid image input: Please upload a valid image.")
|
35 |
+
|
36 |
+
# Run object detection with error handling
|
37 |
try:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
results = model(image)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
except Exception as e:
|
40 |
+
raise RuntimeError(f"Error during Latex2Layout detection: {e}")
|
41 |
+
|
42 |
+
# Extract results from the first frame
|
43 |
+
result = results[0]
|
44 |
+
annotated_image = image.copy()
|
45 |
+
yolo_annotations = []
|
46 |
+
|
47 |
+
# Get image dimensions
|
48 |
+
img_height, img_width = image.shape[:2]
|
49 |
+
|
50 |
+
# Process each detected object
|
51 |
+
for box in result.boxes:
|
52 |
+
# Extract bounding box coordinates
|
53 |
+
x1, y1, x2, y2 = box.xyxy[0].cpu().numpy()
|
54 |
+
x1, y1, x2, y2 = int(x1), int(y1), int(x2), int(y2)
|
55 |
+
|
56 |
+
# Get confidence and class details
|
57 |
+
conf = float(box.conf[0])
|
58 |
+
cls_id = int(box.cls[0])
|
59 |
+
cls_name = result.names[cls_id]
|
60 |
+
|
61 |
+
# Assign a random color to the class
|
62 |
+
color = tuple(np.random.randint(0, 255, 3).tolist())
|
63 |
|
64 |
+
# Draw bounding box on the image
|
65 |
+
cv2.rectangle(annotated_image, (x1, y1), (x2, y2), color, 2)
|
66 |
+
|
67 |
+
# Create and draw label with confidence
|
68 |
+
label = f"{cls_name} {conf:.2f}"
|
69 |
+
(label_width, label_height), _ = cv2.getTextSize(label, cv2.FONT_HERSHEY_SIMPLEX, 0.5, 1)
|
70 |
+
cv2.rectangle(annotated_image, (x1, y1 - label_height - 5), (x1 + label_width, y1), color, -1)
|
71 |
+
cv2.putText(annotated_image, label, (x1, y1 - 5), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255), 1)
|
72 |
+
|
73 |
+
# Convert bounding box to YOLO format (normalized coordinates)
|
74 |
+
x_center = (x1 + x2) / (2 * img_width)
|
75 |
+
y_center = (y1 + y2) / (2 * img_height)
|
76 |
+
width = (x2 - x1) / img_width
|
77 |
+
height = (y2 - y1) / img_height
|
78 |
+
yolo_annotations.append(f"{cls_id} {x_center:.6f} {y_center:.6f} {width:.6f} {height:.6f}")
|
79 |
+
|
80 |
+
# Combine annotations into a single string
|
81 |
+
yolo_annotations_str = "\n".join(yolo_annotations) if yolo_annotations else "No objects detected."
|
82 |
+
return annotated_image, yolo_annotations_str
|
83 |
+
|
84 |
+
def save_yolo_annotations(yolo_annotations_str):
|
85 |
"""
|
86 |
+
Save YOLO annotations to a temporary file and return its path.
|
87 |
+
|
88 |
Args:
|
89 |
+
yolo_annotations_str: Annotations string in YOLO format.
|
90 |
+
|
91 |
Returns:
|
92 |
+
file_path: Path to the saved annotation file.
|
93 |
"""
|
94 |
+
# Handle empty annotations
|
95 |
+
if not yolo_annotations_str or yolo_annotations_str == "No objects detected.":
|
96 |
+
raise ValueError("No annotations available to save.")
|
97 |
+
|
98 |
+
# Save annotations to a temporary file with error handling
|
99 |
try:
|
|
|
|
|
|
|
100 |
temp_file = tempfile.NamedTemporaryFile(delete=False, suffix=".txt")
|
101 |
+
temp_file_path = temp_file.name
|
102 |
+
with open(temp_file_path, "w") as f:
|
103 |
+
f.write(yolo_annotations_str)
|
104 |
+
return temp_file_path
|
105 |
except Exception as e:
|
106 |
+
raise RuntimeError(f"Failed to save annotations: {e}")
|
107 |
+
|
108 |
+
# Build the Gradio interface
|
109 |
+
with gr.Blocks(title="Latex2Layout Object Detection Visualization") as demo:
|
110 |
+
gr.Markdown("# Latex2Layout Object Detection Visualization")
|
111 |
+
gr.Markdown("Upload an image to detect objects using the Latex2Layout model. View the results with bounding boxes and download annotations in YOLO format.")
|
112 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
113 |
with gr.Row():
|
114 |
+
with gr.Column():
|
115 |
+
input_image = gr.Image(label="Upload Image", type="numpy")
|
116 |
+
detect_btn = gr.Button("Start Detection")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
117 |
|
118 |
+
with gr.Column():
|
119 |
+
output_image = gr.Image(label="Detection Results")
|
120 |
+
yolo_annotations = gr.Textbox(label="YOLO Annotations", lines=10)
|
121 |
+
download_btn = gr.Button("Download YOLO Annotations")
|
122 |
+
download_file = gr.File(label="Download Annotations")
|
123 |
+
|
124 |
+
# Define button click events
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
125 |
detect_btn.click(
|
126 |
fn=detect_and_visualize,
|
127 |
+
inputs=[input_image],
|
128 |
+
outputs=[output_image, yolo_annotations]
|
|
|
129 |
)
|
|
|
130 |
download_btn.click(
|
131 |
+
fn=save_yolo_annotations,
|
132 |
+
inputs=[yolo_annotations],
|
133 |
+
outputs=[download_file]
|
134 |
)
|
135 |
|
136 |
# Launch the application
|