Topic-Detection / app.py
Chan-Y's picture
Update app.py
dcd9030 verified
raw
history blame
4.46 kB
import gradio as gr
from langchain.prompts import PromptTemplate
from langchain_huggingface import HuggingFaceEndpoint
from langchain_core.output_parsers import JsonOutputParser
from langdetect import detect
import time
import torch
from transformers import pipeline
import re
from whisperplus import download_youtube_to_mp3
# Initialize the LLM and other components
llm = HuggingFaceEndpoint(
repo_id="mistralai/Mistral-7B-Instruct-v0.3",
task="text-generation",
max_new_tokens=128,
temperature=0.7,
do_sample=False,
)
template_classify = '''
You are a topic detector bot. Your task is to determine the main topic of given text phrase.
Answer general main topic not specific words.
Your answer does not contain specific information from given text.
Answer just one general main topic. Do not answer two or more topic.
Answer shortly with two or three word phrase. Do not answer with long sentence.
Answer topic with context. Example, if it says "My delivery is late", its topic is late delivery.
If you do not know the topic just answer as General.
What is the main topic of given text?:
<text>
{TEXT}
</text>
convert it to json format using 'Answer' as key and return it.
Your final response MUST contain only the response, no other text.
Example:
{{"Answer":["General"]}}
'''
json_output_parser = JsonOutputParser()
# Define the classify_text function
def classify_text(text):
global llm
start = time.time()
try:
lang = detect(text)
except:
lang = "en"
prompt_classify = PromptTemplate(
template=template_classify,
input_variables=["LANG", "TEXT"]
)
formatted_prompt = prompt_classify.format(TEXT=text, LANG=lang)
classify = llm.invoke(formatted_prompt)
parsed_output = json_output_parser.parse(classify)
end = time.time()
duration = end - start
return lang, parsed_output["Answer"][0], duration
# Initialize the speech recognition pipeline
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
device = "cuda:0" if torch.cuda.is_available() else "cpu"
pipe = pipeline(
"automatic-speech-recognition",
model="openai/whisper-base", # You may want to specify your desired model here
torch_dtype=torch_dtype,
device=device,
)
def process_audio(audio_path):
result = pipe(audio_path)
text = result["text"]
sentences = re.split(r'[.!?]', text)
sentences = [sentence.strip() for sentence in sentences if sentence.strip()]
classifications = []
for sentence in sentences:
lang, classification, duration = classify_text(sentence)
classifications.append(f"Sentence: {sentence}\nTopic: {classification}\nLanguage: {lang}\nTime: {duration:.2f}s")
return "\n\n".join(classifications)
def handle_audio_input(audio_path=None, youtube_url=None):
if youtube_url:
audio_path = download_youtube_to_mp3(youtube_url, output_dir="downloads", filename="youtube_audio")
if audio_path:
return process_audio(audio_path)
else:
return "No audio input provided."
# Create the Gradio interface
def create_gradio_interface():
with gr.Blocks() as iface:
with gr.Tab("Text Input"):
text_input = gr.Textbox(label="Text")
lang_output = gr.Textbox(label="Detected Language")
output_text = gr.Textbox(label="Detected Topics")
time_taken = gr.Textbox(label="Time Taken (seconds)")
submit_btn = gr.Button("Detect topic")
def on_text_submit(text):
lang, classification, duration = classify_text(text)
return lang, classification, f"Time taken: {duration:.2f} seconds"
submit_btn.click(fn=on_text_submit, inputs=text_input, outputs=[lang_output, output_text, time_taken])
with gr.Tab("Audio Input"):
audio_input = gr.Audio(label="Upload Audio", type="filepath")
youtube_input = gr.Textbox(label="YT URL (optional)")
audio_output = gr.Textbox(label="Detected Topics from Audio")
audio_submit_btn = gr.Button("Process Audio")
def on_audio_submit(audio, youtube_url):
return handle_audio_input(audio_path=audio, youtube_url=youtube_url)
audio_submit_btn.click(fn=on_audio_submit, inputs=[audio_input, youtube_input], outputs=audio_output)
iface.launch()
if __name__ == "__main__":
create_gradio_interface()