Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,89 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from langchain.prompts import PromptTemplate
|
3 |
+
from langchain_huggingface import ChatHuggingFace, HuggingFaceEndpoint
|
4 |
+
from langchain_core.output_parsers import JsonOutputParser
|
5 |
+
from langdetect import detect
|
6 |
+
import time
|
7 |
+
|
8 |
+
# Initialize the LLM and other components
|
9 |
+
llm = HuggingFaceEndpoint(
|
10 |
+
repo_id="mistralai/Mistral-7B-Instruct-v0.3",
|
11 |
+
task="text-generation",
|
12 |
+
max_new_tokens=4096,
|
13 |
+
temperature=0.5,
|
14 |
+
do_sample=False,
|
15 |
+
)
|
16 |
+
llm_engine_hf = ChatHuggingFace(llm=llm)
|
17 |
+
|
18 |
+
template_classify = '''
|
19 |
+
Please carefully read the following text. The text is written in {LANG} language:
|
20 |
+
|
21 |
+
<text>
|
22 |
+
{TEXT}
|
23 |
+
</text>
|
24 |
+
|
25 |
+
After reading it, I want you to classify it in three groups: Positive, Negative, or Notr.
|
26 |
+
Your final response MUST contain only the response, no other text.
|
27 |
+
Example:
|
28 |
+
Positive
|
29 |
+
Negative
|
30 |
+
Notr
|
31 |
+
'''
|
32 |
+
|
33 |
+
template_json = '''
|
34 |
+
Your task is to read the following text, convert it to json format using 'Answer' as key and return it.
|
35 |
+
<text>
|
36 |
+
{RESPONSE}
|
37 |
+
</text>
|
38 |
+
|
39 |
+
Your final response MUST contain only the response, no other text.
|
40 |
+
Example:
|
41 |
+
{{"Answer":"Positive"}}
|
42 |
+
'''
|
43 |
+
json_output_parser = JsonOutputParser()
|
44 |
+
|
45 |
+
# Define the classify_text function
|
46 |
+
def classify_text(text):
|
47 |
+
global llm
|
48 |
+
|
49 |
+
start = time.time()
|
50 |
+
lang = detect(text)
|
51 |
+
|
52 |
+
prompt_classify = PromptTemplate(
|
53 |
+
template=template_classify,
|
54 |
+
input_variables=["LANG", "TEXT"]
|
55 |
+
)
|
56 |
+
formatted_prompt = prompt_classify.format(TEXT=text, LANG=lang)
|
57 |
+
classify = llm.invoke(formatted_prompt)
|
58 |
+
|
59 |
+
prompt_json = PromptTemplate(
|
60 |
+
template=template_json,
|
61 |
+
input_variables=["RESPONSE"]
|
62 |
+
)
|
63 |
+
|
64 |
+
formatted_prompt = template_json.format(RESPONSE=classify)
|
65 |
+
response = llm.invoke(formatted_prompt)
|
66 |
+
|
67 |
+
parsed_output = json_output_parser.parse(response)
|
68 |
+
end = time.time()
|
69 |
+
duration = end - start
|
70 |
+
return parsed_output['Answer'], duration
|
71 |
+
|
72 |
+
# Create the Gradio interface
|
73 |
+
def gradio_app(text):
|
74 |
+
classification, time_taken = classify_text(text)
|
75 |
+
return classification, f"Time taken: {time_taken:.2f} seconds"
|
76 |
+
|
77 |
+
def create_gradio_interface():
|
78 |
+
with gr.Blocks() as iface:
|
79 |
+
text_input = gr.Textbox(label="Text to Classify")
|
80 |
+
output_text = gr.Textbox(label="Classification")
|
81 |
+
time_taken = gr.Textbox(label="Time Taken (seconds)")
|
82 |
+
submit_btn = gr.Button("Classify")
|
83 |
+
|
84 |
+
submit_btn.click(fn=classify_text, inputs=text_input, outputs=[output_text, time_taken])
|
85 |
+
|
86 |
+
iface.launch()
|
87 |
+
|
88 |
+
if __name__ == "__main__":
|
89 |
+
create_gradio_interface()
|