File size: 7,749 Bytes
2a7b7b1
 
 
65d97b1
2a7b7b1
 
 
 
 
 
 
 
 
 
 
 
65d97b1
 
2a7b7b1
 
65d97b1
2a7b7b1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7a63b2c
2a7b7b1
 
 
 
 
 
 
 
 
 
 
 
 
65d97b1
2a7b7b1
 
 
 
 
 
 
 
 
 
 
65d97b1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2a7b7b1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
65d97b1
 
 
 
 
 
 
 
 
 
 
 
 
 
7a63b2c
2a7b7b1
65d97b1
 
2a7b7b1
65d97b1
2a7b7b1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
65d97b1
 
 
 
2a7b7b1
 
 
 
 
 
 
 
 
65d97b1
 
 
 
 
 
2a7b7b1
 
 
 
 
 
 
 
 
 
 
 
 
65d97b1
 
 
 
 
 
2a7b7b1
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
import os
import shutil

from app_modules.overwrites import postprocess
from app_modules.presets import *
from clc.langchain_application import LangChainApplication


# 修改成自己的配置!!!
class LangChainCFG:
    llm_model_name = 'THUDM/chatglm-6b-int4-qe'  # 本地模型文件 or huggingface远程仓库
    embedding_model_name = 'GanymedeNil/text2vec-large-chinese'  # 检索模型文件 or huggingface远程仓库
    vector_store_path = './cache'
    docs_path = './docs'
    kg_vector_stores = {
        '中文维基百科': './cache/zh_wikipedia',
        '大规模金融研报': './cache/financial_research_reports',
        '初始化': './cache',
    }  # 可以替换成自己的知识库,如果没有需要设置为None
    # kg_vector_stores=None
    patterns = ['模型问答', '知识库问答']  #


config = LangChainCFG()
application = LangChainApplication(config)


def get_file_list():
    if not os.path.exists("docs"):
        return []
    return [f for f in os.listdir("docs")]


file_list = get_file_list()


def upload_file(file):
    if not os.path.exists("docs"):
        os.mkdir("docs")
    filename = os.path.basename(file.name)
    shutil.move(file.name, "docs/" + filename)
    # file_list首位插入新上传的文件
    file_list.insert(0, filename)
    application.source_service.add_document("docs/" + filename)
    return gr.Dropdown.update(choices=file_list, value=filename)


def set_knowledge(kg_name, history):
    try:
        application.source_service.load_vector_store(config.kg_vector_stores[kg_name])
        msg_status = f'{kg_name}知识库已成功加载'
    except Exception as e:
        print(e)
        msg_status = f'{kg_name}知识库未成功加载'
    return history + [[None, msg_status]]


def clear_session():
    return '', None


def predict(input,
            large_language_model,
            embedding_model,
            top_k,
            use_web,
            use_pattern,
            history=None):
    # print(large_language_model, embedding_model)
    print(input)
    if history == None:
        history = []

    if use_web == '使用':
        web_content = application.source_service.search_web(query=input)
    else:
        web_content = ''
    search_text = ''
    if use_pattern == '模型问答':
        result = application.get_llm_answer(query=input, web_content=web_content)
        history.append((input, result))
        search_text += web_content
        return '', history, history, search_text

    else:
        resp = application.get_knowledge_based_answer(
            query=input,
            history_len=1,
            temperature=0.1,
            top_p=0.9,
            top_k=top_k,
            web_content=web_content,
            chat_history=history
        )
        history.append((input, resp['result']))
        for idx, source in enumerate(resp['source_documents'][:4]):
            sep = f'----------【搜索结果{idx + 1}:】---------------\n'
            search_text += f'{sep}\n{source.page_content}\n\n'
        print(search_text)
        search_text += "----------【网络检索内容】-----------\n"
        search_text += web_content
        return '', history, history, search_text


with open("assets/custom.css", "r", encoding="utf-8") as f:
    customCSS = f.read()
with gr.Blocks(css=customCSS, theme=small_and_beautiful_theme) as demo:
    gr.Markdown("""<h1><center>Chinese-LangChain</center></h1>
        <center><font size=3>
        </center></font>
        """)
    state = gr.State()

    with gr.Row():
        with gr.Column(scale=1):
            embedding_model = gr.Dropdown([
                "text2vec-base"
            ],
                label="Embedding model",
                value="text2vec-base")

            large_language_model = gr.Dropdown(
                [
                    "ChatGLM-6B-int4",
                ],
                label="large language model",
                value="ChatGLM-6B-int4")

            top_k = gr.Slider(1,
                              20,
                              value=4,
                              step=1,
                              label="检索top-k文档",
                              interactive=True)

            use_web = gr.Radio(["使用", "不使用"], label="web search",
                               info="是否使用网络搜索,使用时确保网络通常",
                               value="不使用"
                               )
            use_pattern = gr.Radio(
                [
                    '模型问答',
                    '知识库问答',
                ],
                label="模式",
                value='模型问答',
                interactive=True)

            kg_name = gr.Radio(list(config.kg_vector_stores.keys()),
                               label="知识库",
                               value=None,
                               info="使用知识库问答,请加载知识库",
                               interactive=True)
            set_kg_btn = gr.Button("加载知识库")

            file = gr.File(label="将文件上传到知识库库,内容要尽量匹配",
                           visible=True,
                           file_types=['.txt', '.md', '.docx', '.pdf']
                           )

        with gr.Column(scale=4):
            with gr.Row():
                chatbot = gr.Chatbot(label='Chinese-LangChain').style(height=400)
            with gr.Row():
                message = gr.Textbox(label='请输入问题')
            with gr.Row():
                clear_history = gr.Button("🧹 清除历史对话")
                send = gr.Button("🚀 发送")
            with gr.Row():
                gr.Markdown("""提醒:<br>
                                        [Chinese-LangChain](https://github.com/yanqiangmiffy/Chinese-LangChain) <br>
                                        有任何使用问题[Github Issue区](https://github.com/yanqiangmiffy/Chinese-LangChain)进行反馈. <br>
                                        """)
        with gr.Column(scale=2):
            search = gr.Textbox(label='搜索结果')

        # ============= 触发动作=============
        file.upload(upload_file,
                    inputs=file,
                    outputs=None)
        set_kg_btn.click(
            set_knowledge,
            show_progress=True,
            inputs=[kg_name, chatbot],
            outputs=chatbot
        )
        # 发送按钮 提交
        send.click(predict,
                   inputs=[
                       message,
                       large_language_model,
                       embedding_model,
                       top_k,
                       use_web,
                       use_pattern,
                       state
                   ],
                   outputs=[message, chatbot, state, search])

        # 清空历史对话按钮 提交
        clear_history.click(fn=clear_session,
                            inputs=[],
                            outputs=[chatbot, state],
                            queue=False)

        # 输入框 回车
        message.submit(predict,
                       inputs=[
                           message,
                           large_language_model,
                           embedding_model,
                           top_k,
                           use_web,
                           use_pattern,
                           state
                       ],
                       outputs=[message, chatbot, state, search])

demo.queue(concurrency_count=2).launch(
    server_name='0.0.0.0',
    server_port=8888,
    share=False,
    show_error=True,
    debug=True,
    enable_queue=True,
    inbrowser=True,
)