File size: 4,445 Bytes
96cd96f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
#!/usr/bin/env python
# -*- coding:utf-8 _*-
"""
@author:quincy qiang
@license: Apache Licence
@file: main.py
@time: 2023/04/17
@contact: [email protected]
@software: PyCharm
@description: coding..
"""

import os
import shutil

import gradio as gr

from clc.langchain_application import LangChainApplication


# 修改成自己的配置!!!
class LangChainCFG:
    llm_model_name = '../../pretrained_models/chatglm-6b'  # 本地模型文件 or huggingface远程仓库
    embedding_model_name = '../../pretrained_models/text2vec-large-chinese'  # 检索模型文件 or huggingface远程仓库
    vector_store_path = './cache'
    docs_path = './docs'


config = LangChainCFG()
application = LangChainApplication(config)


def get_file_list():
    if not os.path.exists("docs"):
        return []
    return [f for f in os.listdir("docs")]


file_list = get_file_list()


def upload_file(file):
    if not os.path.exists("docs"):
        os.mkdir("docs")
    filename = os.path.basename(file.name)
    shutil.move(file.name, "docs/" + filename)
    # file_list首位插入新上传的文件
    file_list.insert(0, filename)
    application.source_service.add_document("docs/" + filename)
    return gr.Dropdown.update(choices=file_list, value=filename)


def clear_session():
    return '', None


def predict(input,
            large_language_model,
            embedding_model,
            history=None):
    print(large_language_model, embedding_model)
    if history == None:
        history = []
    resp = application.get_knowledge_based_answer(
        query=input,
        history_len=5,
        temperature=0.1,
        top_p=0.9,
        chat_history=history
    )
    print(resp)
    history.append((input, resp['result']))
    return '', history, history


block = gr.Blocks()
with block as demo:
    gr.Markdown("""<h1><center>Chinese-LangChain</center></h1>
        <center><font size=3>
        </center></font>
        """)
    with gr.Row():
        with gr.Column(scale=1):
            embedding_model = gr.Dropdown([
                "text2vec-base"
            ],
                label="Embedding model",
                value="text2vec-base")

            large_language_model = gr.Dropdown(
                [
                    "ChatGLM-6B-int4",
                ],
                label="large language model",
                value="ChatGLM-6B-int4")

            with gr.Tab("select"):
                selectFile = gr.Dropdown(file_list,
                                         label="content file",
                                         interactive=True,
                                         value=file_list[0] if len(file_list) > 0 else None)
            with gr.Tab("upload"):
                file = gr.File(label="请上传知识库文件",
                               file_types=['.txt', '.md', '.docx', '.pdf']
                               )

            file.upload(upload_file,
                        inputs=file,
                        outputs=selectFile)
        with gr.Column(scale=4):
            chatbot = gr.Chatbot(label='Chinese-LangChain').style(height=400)
            message = gr.Textbox(label='请输入问题')
            state = gr.State()
            with gr.Row():
                clear_history = gr.Button("🧹 清除历史对话")
                send = gr.Button("🚀 发送")

                # 发送按钮 提交
                send.click(predict,
                           inputs=[
                               message, large_language_model,
                               embedding_model, state
                           ],
                           outputs=[message, chatbot, state])

                # 清空历史对话按钮 提交
                clear_history.click(fn=clear_session,
                                    inputs=[],
                                    outputs=[chatbot, state],
                                    queue=False)

                # 输入框 回车
                message.submit(predict,
                               inputs=[
                                   message, large_language_model,
                                   embedding_model, state
                               ],
                               outputs=[message, chatbot, state])
        with gr.Column(scale=2):
            message = gr.Textbox(label='搜索结果')
demo.queue().launch(server_name='0.0.0.0', server_port=8008, share=False)