Spaces:
Sleeping
Sleeping
File size: 16,414 Bytes
49f816b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 |
"""
---
title: Autoencoder for Stable Diffusion
summary: >
Annotated PyTorch implementation/tutorial of the autoencoder
for stable diffusion.
---
# Autoencoder for [Stable Diffusion](../index.html)
This implements the auto-encoder model used to map between image space and latent space.
We have kept to the model definition and naming unchanged from
[CompVis/stable-diffusion](https://github.com/CompVis/stable-diffusion)
so that we can load the checkpoints directly.
"""
from typing import List
import torch
import torch.nn.functional as F
from torch import nn
class Autoencoder(nn.Module):
"""
## Autoencoder
This consists of the encoder and decoder modules.
"""
def __init__(
self, encoder: "Encoder", decoder: "Decoder", emb_channels: int, z_channels: int
):
"""
:param encoder: is the encoder
:param decoder: is the decoder
:param emb_channels: is the number of dimensions in the quantized embedding space
:param z_channels: is the number of channels in the embedding space
"""
super().__init__()
self.encoder = encoder
self.decoder = decoder
# Convolution to map from embedding space to
# quantized embedding space moments (mean and log variance)
self.quant_conv = nn.Conv2d(2 * z_channels, 2 * emb_channels, 1)
# Convolution to map from quantized embedding space back to
# embedding space
self.post_quant_conv = nn.Conv2d(emb_channels, z_channels, 1)
def encode(self, img: torch.Tensor) -> "GaussianDistribution":
"""
### Encode images to latent representation
:param img: is the image tensor with shape `[batch_size, img_channels, img_height, img_width]`
"""
# Get embeddings with shape `[batch_size, z_channels * 2, z_height, z_height]`
z = self.encoder(img)
# Get the moments in the quantized embedding space
moments = self.quant_conv(z)
# Return the distribution
return GaussianDistribution(moments)
def decode(self, z: torch.Tensor):
"""
### Decode images from latent representation
:param z: is the latent representation with shape `[batch_size, emb_channels, z_height, z_height]`
"""
# Map to embedding space from the quantized representation
z = self.post_quant_conv(z)
# Decode the image of shape `[batch_size, channels, height, width]`
return self.decoder(z)
def forward(self, x):
posterior = self.encode(x)
z = posterior.sample()
dec = self.decode(z)
return dec, posterior
class Encoder(nn.Module):
"""
## Encoder module
"""
def __init__(
self,
*,
channels: int,
channel_multipliers: List[int],
n_resnet_blocks: int,
in_channels: int,
z_channels: int
):
"""
:param channels: is the number of channels in the first convolution layer
:param channel_multipliers: are the multiplicative factors for the number of channels in the
subsequent blocks
:param n_resnet_blocks: is the number of resnet layers at each resolution
:param in_channels: is the number of channels in the image
:param z_channels: is the number of channels in the embedding space
"""
super().__init__()
# Number of blocks of different resolutions.
# The resolution is halved at the end each top level block
n_resolutions = len(channel_multipliers)
# Initial $3 \times 3$ convolution layer that maps the image to `channels`
self.conv_in = nn.Conv2d(in_channels, channels, 3, stride=1, padding=1)
# Number of channels in each top level block
channels_list = [m * channels for m in [1] + channel_multipliers]
# List of top-level blocks
self.down = nn.ModuleList()
# Create top-level blocks
for i in range(n_resolutions):
# Each top level block consists of multiple ResNet Blocks and down-sampling
resnet_blocks = nn.ModuleList()
# Add ResNet Blocks
for _ in range(n_resnet_blocks):
resnet_blocks.append(ResnetBlock(channels, channels_list[i + 1]))
channels = channels_list[i + 1]
# Top-level block
down = nn.Module()
down.block = resnet_blocks
# Down-sampling at the end of each top level block except the last
if i != n_resolutions - 1:
down.downsample = DownSample(channels)
else:
down.downsample = nn.Identity()
#
self.down.append(down)
# Final ResNet blocks with attention
self.mid = nn.Module()
self.mid.block_1 = ResnetBlock(channels, channels)
self.mid.attn_1 = AttnBlock(channels)
self.mid.block_2 = ResnetBlock(channels, channels)
# Map to embedding space with a $3 \times 3$ convolution
self.norm_out = normalization(channels)
self.conv_out = nn.Conv2d(channels, 2 * z_channels, 3, stride=1, padding=1)
def forward(self, img: torch.Tensor):
"""
:param img: is the image tensor with shape `[batch_size, img_channels, img_height, img_width]`
"""
# Map to `channels` with the initial convolution
x = self.conv_in(img)
# Top-level blocks
for down in self.down:
# ResNet Blocks
for block in down.block:
x = block(x)
# Down-sampling
x = down.downsample(x)
# Final ResNet blocks with attention
x = self.mid.block_1(x)
x = self.mid.attn_1(x)
x = self.mid.block_2(x)
# Normalize and map to embedding space
x = self.norm_out(x)
x = swish(x)
x = self.conv_out(x)
#
return x
class Decoder(nn.Module):
"""
## Decoder module
"""
def __init__(
self,
*,
channels: int,
channel_multipliers: List[int],
n_resnet_blocks: int,
out_channels: int,
z_channels: int
):
"""
:param channels: is the number of channels in the final convolution layer
:param channel_multipliers: are the multiplicative factors for the number of channels in the
previous blocks, in reverse order
:param n_resnet_blocks: is the number of resnet layers at each resolution
:param out_channels: is the number of channels in the image
:param z_channels: is the number of channels in the embedding space
"""
super().__init__()
# Number of blocks of different resolutions.
# The resolution is halved at the end each top level block
num_resolutions = len(channel_multipliers)
# Number of channels in each top level block, in the reverse order
channels_list = [m * channels for m in channel_multipliers]
# Number of channels in the top-level block
channels = channels_list[-1]
# Initial $3 \times 3$ convolution layer that maps the embedding space to `channels`
self.conv_in = nn.Conv2d(z_channels, channels, 3, stride=1, padding=1)
# ResNet blocks with attention
self.mid = nn.Module()
self.mid.block_1 = ResnetBlock(channels, channels)
self.mid.attn_1 = AttnBlock(channels)
self.mid.block_2 = ResnetBlock(channels, channels)
# List of top-level blocks
self.up = nn.ModuleList()
# Create top-level blocks
for i in reversed(range(num_resolutions)):
# Each top level block consists of multiple ResNet Blocks and up-sampling
resnet_blocks = nn.ModuleList()
# Add ResNet Blocks
for _ in range(n_resnet_blocks + 1):
resnet_blocks.append(ResnetBlock(channels, channels_list[i]))
channels = channels_list[i]
# Top-level block
up = nn.Module()
up.block = resnet_blocks
# Up-sampling at the end of each top level block except the first
if i != 0:
up.upsample = UpSample(channels)
else:
up.upsample = nn.Identity()
# Prepend to be consistent with the checkpoint
self.up.insert(0, up)
# Map to image space with a $3 \times 3$ convolution
self.norm_out = normalization(channels)
self.conv_out = nn.Conv2d(channels, out_channels, 3, stride=1, padding=1)
def forward(self, z: torch.Tensor):
"""
:param z: is the embedding tensor with shape `[batch_size, z_channels, z_height, z_height]`
"""
# Map to `channels` with the initial convolution
h = self.conv_in(z)
# ResNet blocks with attention
h = self.mid.block_1(h)
h = self.mid.attn_1(h)
h = self.mid.block_2(h)
# Top-level blocks
for up in reversed(self.up):
# ResNet Blocks
for block in up.block:
h = block(h)
# Up-sampling
h = up.upsample(h)
# Normalize and map to image space
h = self.norm_out(h)
h = swish(h)
img = self.conv_out(h)
#
return img
class GaussianDistribution:
"""
## Gaussian Distribution
"""
def __init__(self, parameters: torch.Tensor):
"""
:param parameters: are the means and log of variances of the embedding of shape
`[batch_size, z_channels * 2, z_height, z_height]`
"""
# Split mean and log of variance
self.mean, log_var = torch.chunk(parameters, 2, dim=1)
# Clamp the log of variances
self.log_var = torch.clamp(log_var, -30.0, 20.0)
# Calculate standard deviation
self.std = torch.exp(0.5 * self.log_var)
self.var = torch.exp(self.log_var)
def sample(self):
# Sample from the distribution
return self.mean + self.std * torch.randn_like(self.std)
def kl(self):
return 0.5 * torch.sum(
torch.pow(self.mean, 2) + self.var - 1.0 - self.log_var, dim=[1, 2, 3]
)
class AttnBlock(nn.Module):
"""
## Attention block
"""
def __init__(self, channels: int):
"""
:param channels: is the number of channels
"""
super().__init__()
# Group normalization
self.norm = normalization(channels)
# Query, key and value mappings
self.q = nn.Conv2d(channels, channels, 1)
self.k = nn.Conv2d(channels, channels, 1)
self.v = nn.Conv2d(channels, channels, 1)
# Final $1 \times 1$ convolution layer
self.proj_out = nn.Conv2d(channels, channels, 1)
# Attention scaling factor
self.scale = channels**-0.5
def forward(self, x: torch.Tensor):
"""
:param x: is the tensor of shape `[batch_size, channels, height, width]`
"""
# Normalize `x`
x_norm = self.norm(x)
# Get query, key and vector embeddings
q = self.q(x_norm)
k = self.k(x_norm)
v = self.v(x_norm)
# Reshape to query, key and vector embeedings from
# `[batch_size, channels, height, width]` to
# `[batch_size, channels, height * width]`
b, c, h, w = q.shape
q = q.view(b, c, h * w)
k = k.view(b, c, h * w)
v = v.view(b, c, h * w)
# Compute $\underset{seq}{softmax}\Bigg(\frac{Q K^\top}{\sqrt{d_{key}}}\Bigg)$
attn = torch.einsum("bci,bcj->bij", q, k) * self.scale
attn = F.softmax(attn, dim=2)
# Compute $\underset{seq}{softmax}\Bigg(\frac{Q K^\top}{\sqrt{d_{key}}}\Bigg)V$
out = torch.einsum("bij,bcj->bci", attn, v)
# Reshape back to `[batch_size, channels, height, width]`
out = out.view(b, c, h, w)
# Final $1 \times 1$ convolution layer
out = self.proj_out(out)
# Add residual connection
return x + out
class UpSample(nn.Module):
"""
## Up-sampling layer
"""
def __init__(self, channels: int):
"""
:param channels: is the number of channels
"""
super().__init__()
# $3 \times 3$ convolution mapping
self.conv = nn.Conv2d(channels, channels, 3, padding=1)
def forward(self, x: torch.Tensor):
"""
:param x: is the input feature map with shape `[batch_size, channels, height, width]`
"""
# Up-sample by a factor of $2$
x = F.interpolate(x, scale_factor=2.0, mode="nearest")
# Apply convolution
return self.conv(x)
class DownSample(nn.Module):
"""
## Down-sampling layer
"""
def __init__(self, channels: int):
"""
:param channels: is the number of channels
"""
super().__init__()
# $3 \times 3$ convolution with stride length of $2$ to down-sample by a factor of $2$
self.conv = nn.Conv2d(channels, channels, 3, stride=2, padding=0)
def forward(self, x: torch.Tensor):
"""
:param x: is the input feature map with shape `[batch_size, channels, height, width]`
"""
# Add padding
x = F.pad(x, (0, 1, 0, 1), mode="constant", value=0)
# Apply convolution
return self.conv(x)
class ResnetBlock(nn.Module):
"""
## ResNet Block
"""
def __init__(self, in_channels: int, out_channels: int):
"""
:param in_channels: is the number of channels in the input
:param out_channels: is the number of channels in the output
"""
super().__init__()
# First normalization and convolution layer
self.norm1 = normalization(in_channels)
self.conv1 = nn.Conv2d(in_channels, out_channels, 3, stride=1, padding=1)
# Second normalization and convolution layer
self.norm2 = normalization(out_channels)
self.conv2 = nn.Conv2d(out_channels, out_channels, 3, stride=1, padding=1)
# `in_channels` to `out_channels` mapping layer for residual connection
if in_channels != out_channels:
self.nin_shortcut = nn.Conv2d(
in_channels, out_channels, 1, stride=1, padding=0
)
else:
self.nin_shortcut = nn.Identity()
def forward(self, x: torch.Tensor):
"""
:param x: is the input feature map with shape `[batch_size, channels, height, width]`
"""
h = x
# First normalization and convolution layer
h = self.norm1(h)
h = swish(h)
h = self.conv1(h)
# Second normalization and convolution layer
h = self.norm2(h)
h = swish(h)
h = self.conv2(h)
# Map and add residual
return self.nin_shortcut(x) + h
def swish(x: torch.Tensor):
"""
### Swish activation
"""
return x * torch.sigmoid(x)
def normalization(channels: int):
"""
### Group normalization
This is a helper function, with fixed number of groups and `eps`.
"""
return nn.GroupNorm(num_groups=32, num_channels=channels, eps=1e-6)
def restore_ae_from_sd(model, path):
def remove_prefix(text, prefix):
if text.startswith(prefix):
return text[len(prefix) :]
return text
checkpoint = torch.load(path)
# checkpoint = torch.load(path, map_location="cpu")
ckpt_state_dict = checkpoint["state_dict"]
new_ckpt_state_dict = {}
for k, v in ckpt_state_dict.items():
new_k = remove_prefix(k, "first_stage_model.")
new_ckpt_state_dict[new_k] = v
missing_keys, extra_keys = model.load_state_dict(new_ckpt_state_dict, strict=False)
assert len(missing_keys) == 0
def create_model(in_channels, out_channels, latent_dim=4):
encoder = Encoder(
z_channels=latent_dim,
in_channels=in_channels,
channels=128,
channel_multipliers=[1, 2, 4, 4],
n_resnet_blocks=2,
)
decoder = Decoder(
out_channels=out_channels,
z_channels=latent_dim,
channels=128,
channel_multipliers=[1, 2, 4, 4],
n_resnet_blocks=2,
)
autoencoder = Autoencoder(
emb_channels=latent_dim, encoder=encoder, decoder=decoder, z_channels=latent_dim
)
return autoencoder
|