Spaces:
Sleeping
Sleeping
from transformers import TextStreamer, AutoModelForCausalLM, AutoTokenizer | |
from typing import Tuple, List, Dict | |
import torch | |
# from unsloth import FastLanguageModel | |
def load_model( | |
model_name: str, | |
max_seq_length: int, | |
dtype: torch.dtype, | |
load_in_4bit: bool | |
) -> Tuple[AutoModelForCausalLM, any]: | |
""" | |
Load and initialize the language model for inference. | |
Args: | |
model_name (str): Name of the pre-trained model to load | |
max_seq_length (int): Maximum sequence length for the model | |
dtype (torch.dtype): Data type for model weights | |
load_in_4bit (bool): Whether to load model in 4-bit quantization | |
Returns: | |
Tuple[FastLanguageModel, any]: Tuple containing the model and tokenizer | |
""" | |
try: | |
from transformers import BitsAndBytesConfig | |
bnb_config = BitsAndBytesConfig(load_in_4bit=False) | |
except ImportError: | |
bnb_config = None | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
model = AutoModelForCausalLM.from_pretrained( | |
pretrained_model_name_or_path=model_name, | |
device_map="cpu", | |
torch_dtype=torch.float32, # Use float32 for CPU | |
low_cpu_mem_usage=True, # Helps with memory efficiency | |
quantization_config=bnb_config | |
) | |
model.eval() # Set model to evaluation mode | |
return model, tokenizer | |
def prepare_input( | |
messages: List[Dict[str, str]], | |
tokenizer: any, | |
device: str = "cpu" | |
) -> torch.Tensor: | |
""" | |
Prepare input for the model by applying chat template and tokenization. | |
Args: | |
messages (List[Dict[str, str]]): List of message dictionaries | |
tokenizer: The tokenizer instance | |
device (str): Device to load tensors to ("cuda" or "cpu") | |
Returns: | |
torch.Tensor: Prepared input tensor | |
""" | |
return tokenizer.apply_chat_template( | |
messages, | |
tokenize=True, | |
add_generation_prompt=True, | |
return_tensors="pt" | |
).to(device) | |
def generate_response( | |
model: AutoModelForCausalLM, | |
inputs: torch.Tensor, | |
tokenizer: any, | |
max_new_tokens: int = 2000, | |
temperature: float = 1.5, | |
min_p: float = 0.1, | |
skip_prompt: bool = True | |
) -> str: | |
""" | |
Generate response using the model. | |
Args: | |
model (FastLanguageModel): The language model | |
inputs (torch.Tensor): Prepared input tensor | |
tokenizer: The tokenizer instance | |
max_new_tokens (int): Maximum number of tokens to generate | |
temperature (float): Sampling temperature | |
min_p (float): Minimum probability for nucleus sampling | |
skip_prompt (bool): Whether to skip prompt in output | |
Returns: | |
str: Generated response | |
""" | |
device = torch.device("cpu") | |
# text_streamer = TextStreamer(tokenizer, skip_prompt=skip_prompt) | |
inputs = tokenizer(inputs, return_tensors="pt").to(device) | |
outputs = model.generate( | |
inputs, | |
max_length=2000, | |
do_sample=False # Deterministic generation | |
# num_return_sequences=1, | |
# streamer=text_streamer, | |
# max_new_tokens=max_new_tokens, | |
# use_cache=True, | |
# temperature=temperature, | |
# min_p=min_p | |
) | |
generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
return generated_text | |
def main( | |
USER_INPUT_CODE = "program sum_of_numbers\n implicit none\n integer :: n, i, sum\n\n ! Initialize variables\n sum = 0\n\n ! Get user input\n print *, \"Enter a positive integer:\"\n read *, n\n\n ! Calculate the sum of numbers from 1 to n\n do i = 1, n\n sum = sum + i\n end do\n\n ! Print the result\n print *, \"The sum of numbers from 1 to\", n, \"is\", sum\nend program sum_of_numbers", | |
USER_INPUT_EXPLANATION = "The provided Fortran code snippet is a program that calculates the sum of integers from 1 to n, where n is provided by the user. It uses a simple procedural approach, including variable declarations, input handling, and a loop for the summation.\n\nThe functionality of the program is explained in detail in the elaboration. The program starts by initializing variables and prompting the user for input. It then calculates the sum using a do loop, iterating from 1 to n, and accumulating the result in a variable. Finally, it prints the computed sum to the console.\n\nThis program demonstrates a straightforward application of Fortran's capabilities for handling loops and basic arithmetic operations. It is a clear example of how Fortran can be used to solve mathematical problems involving user interaction and iterative computations.", | |
MODEL_PATH = "lora_model" | |
): | |
""" | |
Main function to demonstrate the inference pipeline. | |
""" | |
# Import configuration | |
from config import max_seq_length, dtype, load_in_4bit | |
# Example messages | |
messages = [ | |
{ | |
"role": "user", | |
"content": str("[Fortran Code]") + str(USER_INPUT_CODE) + str("[Fortran Code Explain]") + str(USER_INPUT_EXPLANATION) | |
} | |
] | |
# Load model | |
model, tokenizer = load_model( | |
model_name=MODEL_PATH | |
) | |
# Prepare input | |
inputs = prepare_input(messages, tokenizer) | |
# Generate response | |
return generate_response(model, inputs, tokenizer) | |
if __name__ == "__main__": | |
# YOUR_FORTRAN_CODE_HERE | |
USER_INPUT_CODE = "program sum_of_numbers\n implicit none\n integer :: n, i, sum\n\n ! Initialize variables\n sum = 0\n\n ! Get user input\n print *, \"Enter a positive integer:\"\n read *, n\n\n ! Calculate the sum of numbers from 1 to n\n do i = 1, n\n sum = sum + i\n end do\n\n ! Print the result\n print *, \"The sum of numbers from 1 to\", n, \"is\", sum\nend program sum_of_numbers" | |
# YOUR_EXPLANATION_HERE | |
USER_INPUT_EXPLANATION = "The provided Fortran code snippet is a program that calculates the sum of integers from 1 to n, where n is provided by the user. It uses a simple procedural approach, including variable declarations, input handling, and a loop for the summation.\n\nThe functionality of the program is explained in detail in the elaboration. The program starts by initializing variables and prompting the user for input. It then calculates the sum using a do loop, iterating from 1 to n, and accumulating the result in a variable. Finally, it prints the computed sum to the console.\n\nThis program demonstrates a straightforward application of Fortran's capabilities for handling loops and basic arithmetic operations. It is a clear example of how Fortran can be used to solve mathematical problems involving user interaction and iterative computations." | |
# YOUR_MODEL_PATH_HERE | |
MODEL_PATH = "lora_model" | |
main(USER_INPUT_CODE, USER_INPUT_EXPLANATION, MODEL_PATH) |