Chatbot / app.py
Cartof's picture
Update app.py
8f58a38
raw
history blame
3.94 kB
import gradio as gr
import openai
import os
current_dir = os.path.dirname(os.path.abspath(__file__))
css_file = os.path.join(current_dir, "style.css")
initial_prompt = "You are a helpful assistant."
def parse_text(text):
lines = text.split("\n")
for i,line in enumerate(lines):
if "```" in line:
items = line.split('`')
if items[-1]:
lines[i] = f'<pre><code class="{items[-1]}">'
else:
lines[i] = f'</code></pre>'
else:
if i>0:
line = line.replace("<", "&lt;")
line = line.replace(">", "&gt;")
lines[i] = '<br/>'+line.replace(" ", "&nbsp;")
return "".join(lines)
def get_response(system, context, raw=False):
openai.api_key = "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"
response = openai.Completion.create(
engine="text-davinci-002",
prompt=f"{system}{''.join([f'{c['role']}: {c['content']}\n' for c in context])}",
max_tokens=1024,
n=1,
stop=None,
temperature=0.5,
)
message = response.choices[0].text
message_with_stats = f"{message}"
return message, parse_text(message_with_stats)
def predict(input_sentence):
if len(input_sentence) == 0:
return []
chatbot.append((input_sentence, message_with_stats))
context.append({"role": "user", "content": f"{input_sentence}"})
message, message_with_stats = get_response(systemPrompt.value["content"], context)
context.append({"role": "assistant", "content": message})
return chatbot, context
def retry():
if len(context) == 0:
return [], []
context[-1]["content"] = "Could you rephrase that?"
message, message_with_stats = get_response(systemPrompt.value["content"], context[:-1])
context[-1] = {"role": "assistant", "content": message}
chatbot[-1] = (context[-2]["content"], message_with_stats)
return chatbot, context
def delete_last_conversation():
if len(context) == 0:
return [], []
chatbot = chatbot[:-1]
context = context[:-2]
return chatbot, context
def reduce_token():
context.append({"role": "user", "content": "Please summarize our conversation and reduce tokens used. Don't include this prompt."})
response = get_response(systemPrompt.value["content"], context, raw=True)
optmz_str = f'Okay, we talked about: {response.choices[0].text}\n\nTotal tokens used this conversation: {response.choices[0].logprobs.top_logprobs[0].tokens}'
chatbot.append(("Please summarize our conversation and reduce tokens used. Don't include this prompt.", parse_text(optmz_str)))
context = [{"role": "assistant", "content": f"Okay, we talked about: {response.choices[0].text}"}]
return chatbot, context
def reset_state():
return [], []
def update_system(new_system_prompt):
return {"role": "system", "content": new_system_prompt}
title = """<h1 align="center">You Ask, I Answer - Chatbot</h1>"""
description = "This chatbot is designed to assist you with any questions or tasks you may have. Simply type in your query and the chatbot will provide you with a helpful response."
systemPrompt = gr.inputs.Textbox(lines=2, label="Enter the system prompt you would like to use:")
userInput = gr.inputs.Textbox(lines=2, label="Enter your message:")
chatbot_output = gr.outputs.HTML(type="auto")
chatbot_interface = gr.Interface(
predict,
[systemPrompt, userInput],
chatbot_output,
title=title,
description=description,
theme="compact",
layout="vertical",
examples=[
["Can you help me with my math homework?", "Sure, what do you need help with?"],
["How can I make pizza from scratch?", "First, you will need to gather the ingredients..."]
],
article="https://openai.com/blog/how-to-build-a-state-of-the-art-conversational-ai-with-transfer-learning-2021/"
)
if name == "main":
chatbot_interface.launch(debug=True)