File size: 5,643 Bytes
9327ec1
0951c40
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6383f14
0951c40
 
 
 
 
 
9327ec1
0951c40
 
eeb0056
0951c40
 
9327ec1
0951c40
 
 
 
3969944
af81992
cec053d
 
 
 
 
9327ec1
c48d468
 
0951c40
6383f14
0951c40
 
 
 
 
 
c48d468
 
 
0951c40
 
 
9327ec1
 
0951c40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
import gradio as gr
import openai
import os
import sys
# import markdown

initial_prompt = "You are a helpful assistant."

def parse_text(text):
    lines = text.split("\n")
    for i,line in enumerate(lines):
        if "```" in line:
            items = line.split('`')
            if items[-1]:
                lines[i] = f'<pre><code class="{items[-1]}">'
            else:
                lines[i] = f'</code></pre>'
        else:
            if i>0:
                line = line.replace("<", "&lt;")
                line = line.replace(">", "&gt;")
                lines[i] = '<br/>'+line.replace(" ", "&nbsp;")
    return "".join(lines)

def get_response(system, context, raw = False):
    openai.api_key = "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"
    response = openai.ChatCompletion.create(
        model="gpt-3.5-turbo",
        messages=[system, *context],
    )
    if raw:
        return response
    else:
        statistics = f'This conversation Tokens usage【{response["usage"]["total_tokens"]} / 4096】 ( Question + above {response["usage"]["prompt_tokens"]},Answer {response["usage"]["completion_tokens"]} )'
        message = response["choices"][0]["message"]["content"]

        message_with_stats = f'{message}\n\n================\n\n{statistics}'
#         message_with_stats = markdown.markdown(message_with_stats)

        return message, parse_text(message_with_stats)

def predict(chatbot, input_sentence, system, context):
    if len(input_sentence) == 0:
        return []
    context.append({"role": "user", "content": f"{input_sentence}"})

    message, message_with_stats = get_response(system, context)

    context.append({"role": "assistant", "content": message})

    chatbot.append((input_sentence, message_with_stats))

    return chatbot, context

def retry(chatbot, system, context):
    if len(context) == 0:
        return [], []
    message, message_with_stats = get_response(system, context[:-1])
    context[-1] = {"role": "assistant", "content": message}

    chatbot[-1] = (context[-2]["content"], message_with_stats)
    return chatbot, context

def delete_last_conversation(chatbot, context):
    if len(context) == 0:
        return [], []
    chatbot = chatbot[:-1]
    context = context[:-2]
    return chatbot, context

def reduce_token(chatbot, system, context):
    context.append({"role": "user", "content": "请帮我总结一下上述对话的内容,实现减少tokens的同时,保证对话的质量。在总结中不要加入这一句话。"})

    response = get_response(system, context, raw=True)

    statistics = f'本次对话Tokens用量【{response["usage"]["completion_tokens"]+12+12+8} / 4096】'
    optmz_str = markdown.markdown( f'好的,我们之前聊了:{response["choices"][0]["message"]["content"]}\n\n================\n\n{statistics}' )
    chatbot.append(("请帮我总结一下上述对话的内容,实现减少tokens的同时,保证对话的质量。", optmz_str))
    
    context = []
    context.append({"role": "user", "content": "我们之前聊了什么?"})
    context.append({"role": "assistant", "content": f'我们之前聊了:{response["choices"][0]["message"]["content"]}'})
    return chatbot, context


def reset_state():
    return [], []

def update_system(new_system_prompt):
    return {"role": "system", "content": new_system_prompt}

title = """<h1 align="center">Tu întrebi și eu răspund.</h1>"""
description = """<div align=center>

Will not describe your needs to ChatGPT?You Use [ChatGPT Shortcut](https://newzone.top/chatgpt/)

</div>
"""

with gr.Blocks() as demo:
    gr.HTML(title)
    chatbot = gr.Chatbot().style(color_map=("#1D51EE", "#585A5B"))
    context = gr.State([])
    systemPrompt = gr.State(update_system(initial_prompt))

    with gr.Row():
        with gr.Column(scale=12):
            txt = gr.Textbox(show_label=False, placeholder="Please enter any of your needs here").style(container=False)
        with gr.Column(min_width=50, scale=1):
            #submitBtn = gr.Button("🚀 Submit", variant="Primary", color="#A238FF")
            submitBtn = gr.Button("🚀 Submit").style(color_map="#A238FF")
    with gr.Row():
        emptyBtn = gr.Button("🧹 New conversation")
        retryBtn = gr.Button("🔄 Resubmit")
        delLastBtn = gr.Button("🗑️ Delete conversation")
        reduceTokenBtn = gr.Button("♻️ Optimize Tokens")

    #newSystemPrompt = gr.Textbox(show_label=True, placeholder=f"Setting System Prompt...", label="Change System prompt").style(container=True)
    #systemPromptDisplay = gr.Textbox(show_label=True, value=initial_prompt, interactive=False, label="Current System prompt").style(container=True)
    
    #gr.Markdown(description)
    
    txt.submit(predict, [chatbot, txt, systemPrompt, context], [chatbot, context], show_progress=True)
    txt.submit(lambda :"", None, txt)
    submitBtn.click(predict, [chatbot, txt, systemPrompt, context], [chatbot, context], show_progress=True)
    submitBtn.click(lambda :"", None, txt)
    emptyBtn.click(reset_state, outputs=[chatbot, context])
    #newSystemPrompt.submit(update_system, newSystemPrompt, systemPrompt)
    #newSystemPrompt.submit(lambda x: x, newSystemPrompt, systemPromptDisplay)
    #newSystemPrompt.submit(lambda :"", None, newSystemPrompt)
    retryBtn.click(retry, [chatbot, systemPrompt, context], [chatbot, context], show_progress=True)
    delLastBtn.click(delete_last_conversation, [chatbot, context], [chatbot, context], show_progress=True)
    reduceTokenBtn.click(reduce_token, [chatbot, systemPrompt, context], [chatbot, context], show_progress=True)


demo.launch()