StableVicuna / app.py
reshinthadith's picture
Update app.py
e48dccb
raw
history blame
4.34 kB
import os
from string import Template
from threading import Thread
import torch
import gradio as gr
from transformers import AutoTokenizer, AutoModelForCausalLM, TextIteratorStreamer
auth_token = os.environ.get("HUGGINGFACE_TOKEN")
tokenizer = AutoTokenizer.from_pretrained(
"CarperAI/stable-vicuna-13b-fp16",
use_auth_token=auth_token if auth_token else True,
)
model = AutoModelForCausalLM.from_pretrained(
"CarperAI/stable-vicuna-13b-fp16",
use_auth_token=auth_token if auth_token else True,
).to("cuda")
max_context_length = model.config.max_position_embeddings
max_new_tokens = 512
prompt_template = Template("""\
### Human: $human
### Assistant: $bot\
""")
def bot(history):
# print(f"History:\n`{history}`")
history = history or []
# Hack to inject prompt formatting into the history
prompt_history = []
for human, bot in history:
if bot is not None:
bot = bot.replace("<br>", "\n")
bot = bot.rstrip()
prompt_history.append(
prompt_template.substitute(
human=human, bot=bot if bot is not None else "")
)
messages = "\n\n".join(prompt_history)
messages = messages.rstrip()
# print(f"Messages:\n{messages}")
# Use only the most recent context up to the maximum context length with room left over
# for the max new tokens
inputs = tokenizer(messages, return_tensors='pt').to('cuda')
inputs = {k: v[:, -max_context_length + max_new_tokens:]
for k, v in inputs.items()}
if inputs.get("token_type_ids", None) is not None:
inputs.pop("token_type_ids")
# print(f"Inputs: {inputs}")
streamer = TextIteratorStreamer(
tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True
)
# Generate the response
generate_kwargs = dict(
inputs,
streamer=streamer,
max_new_tokens=max_new_tokens,
do_sample=True,
temperature=1.0,
top_p=0.9999,
)
# print(f"Generating with kwargs: {generate_kwargs}")
thread = Thread(target=model.generate, kwargs=generate_kwargs)
thread.start()
partial_text = ""
for new_text in streamer:
# Process out the prompt separator. NOTE: we should tune with special tokens for this
new_text = new_text.replace("<br>", "\n")
# print(f"New text: `{new_text}`")
if "###" in new_text:
new_text = new_text.split("###")[0]
partial_text += new_text.strip()
history[-1][1] = partial_text
break
else:
# Filter empty trailing whitespaces
if new_text.isspace():
new_text = new_text.strip()
partial_text += new_text
history[-1][1] = partial_text
yield history
return partial_text
def user(user_message, history):
return "", history + [[user_message, None]]
with gr.Blocks() as demo:
gr.Markdown("Chat-RLHF by CarperAI")
gr.HTML("<a href='https://huggingface.co/CarperAI/vicuna-13b-fine-tuned-rlhf'><code>CarperAI/vicuna-13b-fine-tuned-rlhf</a>")
gr.HTML('''<center><a href="https://huggingface.co/spaces/CarperAI/chat-rlhf?duplicate=true"><img src="https://bit.ly/3gLdBN6" alt="Duplicate Space"></a>Duplicate the Space to skip the queue and run in a private space</center>''')
chatbot = gr.Chatbot([], elem_id="chatbot").style(height=512)
state = gr.State([])
with gr.Row():
with gr.Column():
msg = gr.Textbox(label="Chat Message Box", placeholder="Chat Message Box",
show_label=False).style(container=False)
with gr.Column():
with gr.Row():
submit = gr.Button("Submit")
stop = gr.Button("Stop")
clear = gr.Button("Clear")
submit_event = msg.submit(user, inputs=[msg, chatbot], outputs=[msg, chatbot], queue=True).then(
bot, chatbot, chatbot)
submit_click_event = submit.click(user, inputs=[msg, chatbot], outputs=[msg, chatbot], queue=True).then(
bot, chatbot, chatbot)
stop.click(fn=None, inputs=None, outputs=None, cancels=[
submit_event, submit_click_event], queue=False)
clear.click(lambda: None, None, chatbot, queue=True)
demo.queue(max_size=32, concurrency_count=2)
demo.launch()