awacke1 commited on
Commit
f8f46d0
Β·
verified Β·
1 Parent(s): 707d0de

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +68 -36
app.py CHANGED
@@ -2,23 +2,8 @@ import streamlit as st
2
  import pandas as pd
3
  import os
4
  import glob
 
5
 
6
-
7
- # Set page configuration with a title and favicon
8
- st.set_page_config(
9
- page_title="πŸ©ΊπŸ” Care Team Finder - Care Providers by Specialty and Location",
10
- page_icon="🩺",
11
- layout="wide",
12
- initial_sidebar_state="expanded",
13
- menu_items={
14
- 'Get Help': 'https://huggingface.co/awacke1',
15
- 'Report a bug': "https://huggingface.co/spaces/awacke1/WebDataDownload",
16
- 'About': "# πŸ©ΊπŸ” Care Team Finder By Aaron Wacker - https://huggingface.co/awacke1"
17
- }
18
- )
19
-
20
-
21
- # Define headers for dataframe
22
  headers = [
23
  "NPI", "EntityTypeCode", "ReplacementNPI", "EmployerIdentificationNumberEIN",
24
  "ProviderOrganizationNameLegalBusinessName", "ProviderLastNameLegalName",
@@ -43,6 +28,41 @@ headers = [
43
  "HealthcareProviderPrimaryTaxonomySwitch"
44
  ]
45
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
46
  # Cache the loading of specialties for efficiency
47
  @st.cache_resource
48
  def load_specialties(csv_file='Provider-Specialty.csv'):
@@ -53,13 +73,36 @@ def load_specialties(csv_file='Provider-Specialty.csv'):
53
  def find_state_files():
54
  return [file for file in glob.glob('./*.csv') if len(os.path.basename(file).split('.')[0]) == 2]
55
 
56
- specialties = load_specialties()
57
-
58
-
 
 
 
 
 
 
 
 
 
59
 
 
60
  st.markdown("# πŸ©ΊπŸ” Care Team Finder ")
61
  st.markdown("#### Search for Care Providers by Specialty and Location")
62
 
 
 
 
 
 
 
 
 
 
 
 
 
 
63
  # Allows users to select or search for a specialty
64
  specialty_options = specialties['Display Name'].unique()
65
  selected_specialty = st.selectbox('Select a Specialty 🩺', options=specialty_options)
@@ -81,17 +124,19 @@ selected_state = st.selectbox('Select a State (optional) πŸ—ΊοΈ', options=state
81
  # Checkbox to filter by selected state only
82
  use_specific_state = st.checkbox('Filter by selected state only? βœ…', value=True)
83
 
 
84
  def process_files(specialty_codes, specific_state='MN'):
85
  results = []
86
  file_to_process = f'./{specific_state}.csv' if use_specific_state else state_files
87
 
88
  for file in [file_to_process] if use_specific_state else state_files:
89
- # Load data with headers
90
- state_df = pd.read_csv(file, header=None, names=headers)
91
 
92
  for code in specialty_codes:
93
- filtered_df = state_df[state_df['HealthcareProviderTaxonomyCode'].isin([code])]
94
  if not filtered_df.empty:
 
95
  display_info = specialties[specialties['Code'] == code][['Code', 'Grouping', 'Classification']].iloc[0].to_dict()
96
  results.append((os.path.basename(file).replace('.csv', ''), display_info, filtered_df))
97
 
@@ -101,6 +146,7 @@ def process_files(specialty_codes, specific_state='MN'):
101
  if st.button('Analyze Text Files for Selected Specialty πŸ”'):
102
  specialty_codes = filtered_specialties['Code'].tolist()
103
  state_data = process_files(specialty_codes, selected_state if use_specific_state else None)
 
104
  if state_data:
105
  for state, info, df in state_data:
106
  st.subheader(f"Providers in {state} with Specialties related to '{search_keyword or selected_specialty}':")
@@ -108,17 +154,3 @@ if st.button('Analyze Text Files for Selected Specialty πŸ”'):
108
  st.dataframe(df)
109
  else:
110
  st.write("No matching records found in text files for the selected specialties.")
111
-
112
- # Moved Help Information to the bottom
113
- if st.expander('🩺 Understand Provider Specialties πŸ“'):
114
- st.markdown('''
115
- ## Discover Care Providers by Specialty & Location: Quick Guide
116
- - **Code**: Unique ID identifies each specialty clearly. πŸ†”
117
- - **Grouping**: Broad category umbrella for general expertise area. 🏷️
118
- - **Classification**: Specifies type of practice within broader category. 🎯
119
- - **Specialization**: Details focus within classification for precise expertise. πŸ”
120
- - **Definition**: Concise overview of the specialty's scope. πŸ“–
121
- - **Notes**: Extra information or recent updates provided. πŸ—’οΈ
122
- - **Display Name**: Commonly recognized name of the specialty. 🏷️
123
- - **Section**: Healthcare segment the specialty belongs to. πŸ“š
124
- ''')
 
2
  import pandas as pd
3
  import os
4
  import glob
5
+ import matplotlib.pyplot as plt
6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7
  headers = [
8
  "NPI", "EntityTypeCode", "ReplacementNPI", "EmployerIdentificationNumberEIN",
9
  "ProviderOrganizationNameLegalBusinessName", "ProviderLastNameLegalName",
 
28
  "HealthcareProviderPrimaryTaxonomySwitch"
29
  ]
30
 
31
+ def process_files_new(specialty_codes, specific_state='MN', use_specific_state=True):
32
+ results = []
33
+ city_counts = {} # Dictionary to keep track of city counts
34
+ file_to_process = f'./{specific_state}.csv' if use_specific_state else state_files
35
+
36
+ for file in [file_to_process] if use_specific_state else state_files:
37
+ # Now using the 'names' parameter to specify column names
38
+ state_df = pd.read_csv(file, header=None, names=headers)
39
+ for code in specialty_codes:
40
+ filtered_df = state_df[state_df['HealthcareProviderTaxonomyCode'].isin([code])]
41
+ if not filtered_df.empty:
42
+ # Update city counts
43
+ for city in filtered_df['ProviderBusinessPracticeLocationAddressCityName'].unique():
44
+ city_counts[city] = city_counts.get(city, 0) + filtered_df[filtered_df['ProviderBusinessPracticeLocationAddressCityName'] == city].shape[0]
45
+
46
+ # Prepare display information (assuming 'specialties' DataFrame exists)
47
+ display_info = specialties[specialties['Code'] == code][['Code', 'Grouping', 'Classification']].iloc[0].to_dict()
48
+ results.append((os.path.basename(file).replace('.csv', ''), display_info, filtered_df))
49
+
50
+ # Plotting the city counts
51
+ cities = list(city_counts.keys())
52
+ counts = list(city_counts.values())
53
+
54
+ #plt.figure(figsize=(10, 6))
55
+ #plt.bar(cities, counts, color='skyblue')
56
+ #plt.xlabel('City')
57
+ #plt.ylabel('Count')
58
+ #plt.xticks(rotation=45, ha='right')
59
+ #plt.title('Counts per City')
60
+ #plt.tight_layout()
61
+ #plt.show()
62
+
63
+ return results
64
+
65
+
66
  # Cache the loading of specialties for efficiency
67
  @st.cache_resource
68
  def load_specialties(csv_file='Provider-Specialty.csv'):
 
73
  def find_state_files():
74
  return [file for file in glob.glob('./*.csv') if len(os.path.basename(file).split('.')[0]) == 2]
75
 
76
+ # Set page configuration with a title and favicon
77
+ st.set_page_config(
78
+ page_title="πŸ©ΊπŸ” Care Team Finder - Care Providers by Specialty and Location",
79
+ page_icon="🩺",
80
+ layout="wide",
81
+ initial_sidebar_state="expanded",
82
+ menu_items={
83
+ 'Get Help': 'https://huggingface.co/awacke1',
84
+ 'Report a bug': "https://huggingface.co/spaces/awacke1/WebDataDownload",
85
+ 'About': "# πŸ©ΊπŸ” Care Team Finder By Aaron Wacker - https://huggingface.co/awacke1"
86
+ }
87
+ )
88
 
89
+ specialties = load_specialties()
90
  st.markdown("# πŸ©ΊπŸ” Care Team Finder ")
91
  st.markdown("#### Search for Care Providers by Specialty and Location")
92
 
93
+ if st.expander('🩺 Understand Provider Specialties πŸ“'):
94
+ st.markdown('''
95
+ ## Discover Care Providers by Specialty & Location: Quick Guide
96
+ - **Code**: Unique ID identifies each specialty clearly. πŸ†”
97
+ - **Grouping**: Broad category umbrella for general expertise area. 🏷️
98
+ - **Classification**: Specifies type of practice within broader category. 🎯
99
+ - **Specialization**: Details focus within classification for precise expertise. πŸ”
100
+ - **Definition**: Concise overview of the specialty's scope. πŸ“–
101
+ - **Notes**: Extra information or recent updates provided. πŸ—’οΈ
102
+ - **Display Name**: Commonly recognized name of the specialty. 🏷️
103
+ - **Section**: Healthcare segment the specialty belongs to. πŸ“š
104
+ ''')
105
+
106
  # Allows users to select or search for a specialty
107
  specialty_options = specialties['Display Name'].unique()
108
  selected_specialty = st.selectbox('Select a Specialty 🩺', options=specialty_options)
 
124
  # Checkbox to filter by selected state only
125
  use_specific_state = st.checkbox('Filter by selected state only? βœ…', value=True)
126
 
127
+ # Process files based on specialty codes and state selection
128
  def process_files(specialty_codes, specific_state='MN'):
129
  results = []
130
  file_to_process = f'./{specific_state}.csv' if use_specific_state else state_files
131
 
132
  for file in [file_to_process] if use_specific_state else state_files:
133
+ state_df = pd.read_csv(file, header=None) # Assuming no header for simplicity
134
+ #state_df = pd.read_csv(file, header=0) # Assuming no header for simplicity
135
 
136
  for code in specialty_codes:
137
+ filtered_df = state_df[state_df[47].isin([code])] # Match against 48th column, adjust as needed
138
  if not filtered_df.empty:
139
+ # Enhance the display to include 'Code', 'Grouping', and 'Classification' information
140
  display_info = specialties[specialties['Code'] == code][['Code', 'Grouping', 'Classification']].iloc[0].to_dict()
141
  results.append((os.path.basename(file).replace('.csv', ''), display_info, filtered_df))
142
 
 
146
  if st.button('Analyze Text Files for Selected Specialty πŸ”'):
147
  specialty_codes = filtered_specialties['Code'].tolist()
148
  state_data = process_files(specialty_codes, selected_state if use_specific_state else None)
149
+ #state_data = process_files_new(specialty_codes, selected_state if use_specific_state else None)
150
  if state_data:
151
  for state, info, df in state_data:
152
  st.subheader(f"Providers in {state} with Specialties related to '{search_keyword or selected_specialty}':")
 
154
  st.dataframe(df)
155
  else:
156
  st.write("No matching records found in text files for the selected specialties.")