Spaces:
Running
Running
import os | |
import json | |
import random | |
from config import DATA_ROOT | |
SDD_ROOT = os.path.join(DATA_ROOT, 'SDD_anomaly_detection') | |
class SDDSolver(object): | |
CLSNAMES = [ | |
'SDD', | |
] | |
def __init__(self, root=SDD_ROOT, train_ratio=0.5): | |
self.root = root | |
self.meta_path = f'{root}/meta.json' | |
self.train_ratio = train_ratio | |
def run(self): | |
self.generate_meta_info() | |
def generate_meta_info(self): | |
info = dict(train={}, test={}) | |
for cls_name in self.CLSNAMES: | |
cls_dir = f'{self.root}/{cls_name}' | |
for phase in ['train', 'test']: | |
cls_info = [] | |
species = os.listdir(f'{cls_dir}/{phase}') | |
for specie in species: | |
is_abnormal = True if specie not in ['good'] else False | |
img_names = os.listdir(f'{cls_dir}/{phase}/{specie}') | |
mask_names = os.listdir(f'{cls_dir}/ground_truth/{specie}') if is_abnormal else None | |
img_names.sort() | |
mask_names.sort() if mask_names is not None else None | |
for idx, img_name in enumerate(img_names): | |
info_img = dict( | |
img_path=f'{cls_name}/{phase}/{specie}/{img_name}', | |
mask_path=f'{cls_name}/ground_truth/{specie}/{mask_names[idx]}' if is_abnormal else '', | |
cls_name=cls_name, | |
specie_name=specie, | |
anomaly=1 if is_abnormal else 0, | |
) | |
cls_info.append(info_img) | |
info[phase][cls_name] = cls_info | |
with open(self.meta_path, 'w') as f: | |
f.write(json.dumps(info, indent=4) + "\n") | |
if __name__ == '__main__': | |
runner = SDDSolver(root=SDD_ROOT) | |
runner.run() | |