Spaces:
Running
Running
File size: 7,482 Bytes
a25563f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 |
import warnings
warnings.filterwarnings("ignore", category=RuntimeWarning)
import os
os.environ['CUBLAS_WORKSPACE_CONFIG'] = ':4096:8'
from torch.utils.data import DataLoader
from tqdm import tqdm
import argparse
import json
import os
import torch
# Importing from local modules
from tools import write2csv, setup_paths, setup_seed, log_metrics, Logger
from dataset import get_data
from method import AdaCLIP_Trainer
setup_seed(111)
def train(args):
# Configurations
epochs = args.epoch
learning_rate = args.learning_rate
batch_size = args.batch_size
image_size = args.image_size
device = 'cuda' if torch.cuda.is_available() else 'cpu'
save_fig = args.save_fig
# Set up paths
model_name, image_dir, csv_path, log_path, ckp_path, tensorboard_logger = setup_paths(args)
# Logger
logger = Logger(log_path)
# Print basic information
for key, value in sorted(vars(args).items()):
logger.info(f'{key} = {value}')
logger.info('Model name: {:}'.format(model_name))
config_path = os.path.join('./model_configs', f'{args.model}.json')
# Prepare model
with open(config_path, 'r') as f:
model_configs = json.load(f)
# Set up the feature hierarchy
n_layers = model_configs['vision_cfg']['layers']
substage = n_layers // 4
features_list = [substage, substage * 2, substage * 3, substage * 4]
model = AdaCLIP_Trainer(
backbone=args.model,
feat_list=features_list,
input_dim=model_configs['vision_cfg']['width'],
output_dim=model_configs['embed_dim'],
learning_rate=learning_rate,
device=device,
image_size=image_size,
prompting_depth=args.prompting_depth,
prompting_length=args.prompting_length,
prompting_branch=args.prompting_branch,
prompting_type=args.prompting_type,
use_hsf=args.use_hsf,
k_clusters=args.k_clusters
).to(device)
train_data_cls_names, train_data, train_data_root = get_data(
dataset_type_list=args.training_data,
transform=model.preprocess,
target_transform=model.transform,
training=True)
test_data_cls_names, test_data, test_data_root = get_data(
dataset_type_list=args.testing_data,
transform=model.preprocess,
target_transform=model.transform,
training=False)
logger.info('Data Root: training, {:}; testing, {:}'.format(train_data_root, test_data_root))
train_dataloader = torch.utils.data.DataLoader(train_data, batch_size=batch_size, shuffle=True)
test_dataloader = torch.utils.data.DataLoader(test_data, batch_size=batch_size, shuffle=False)
# Typically, we use MVTec or VisA as the validation set. The best model from this validation
# process is then used for zero-shot anomaly detection on novel categories.
best_f1 = -1e1
for epoch in tqdm(range(epochs)):
loss = model.train_epoch(train_dataloader)
# Logs
if (epoch + 1) % args.print_freq == 0:
logger.info('epoch [{}/{}], loss:{:.4f}'.format(epoch + 1, epochs, loss))
tensorboard_logger.add_scalar('loss', loss, epoch)
# Validation
if (epoch + 1) % args.valid_freq == 0 or (epoch == epochs - 1):
if epoch == epochs - 1:
save_fig_flag = save_fig
else:
save_fig_flag = False
logger.info('=============================Testing ====================================')
metric_dict = model.evaluation(
test_dataloader,
test_data_cls_names,
save_fig_flag,
image_dir,
)
log_metrics(
metric_dict,
logger,
tensorboard_logger,
epoch
)
f1_px = metric_dict['Average']['f1_px']
# Save best
if f1_px > best_f1:
for k in metric_dict.keys():
write2csv(metric_dict[k], test_data_cls_names, k, csv_path)
ckp_path_best = ckp_path + '_best.pth'
model.save(ckp_path_best)
best_f1 = f1_px
def str2bool(v):
return v.lower() in ("yes", "true", "t", "1")
if __name__ == '__main__':
parser = argparse.ArgumentParser("AdaCLIP", add_help=True)
# Paths and configurations
parser.add_argument("--training_data", type=str, default=["mvtec", "colondb"], nargs='+',
help="Datasets for training (default: ['mvtec', 'colondb'])")
parser.add_argument("--testing_data", type=str, default="visa", help="Dataset for testing (default: 'visa')")
parser.add_argument("--save_path", type=str, default='./workspaces',
help="Directory to save results (default: './workspaces')")
parser.add_argument("--model", type=str, default="ViT-L-14-336",
choices=["ViT-B-16", "ViT-B-32", "ViT-L-14", "ViT-L-14-336"],
help="The CLIP model to be used (default: 'ViT-L-14-336')")
parser.add_argument("--save_fig", type=str2bool, default=False,
help="Save figures for visualizations (default: False)")
parser.add_argument("--ckt_path", type=str, default='', help="Path to the pre-trained model (default: '')")
# Hyper-parameters
parser.add_argument("--exp_indx", type=int, default=0, help="Index of the experiment (default: 0)")
parser.add_argument("--epoch", type=int, default=5, help="Number of epochs (default: 5)")
parser.add_argument("--learning_rate", type=float, default=0.01, help="Learning rate (default: 0.01)")
parser.add_argument("--batch_size", type=int, default=1, help="Batch size (default: 1)")
parser.add_argument("--image_size", type=int, default=518, help="Size of the input images (default: 518)")
parser.add_argument("--print_freq", type=int, default=1, help="Frequency of print statements (default: 1)")
parser.add_argument("--valid_freq", type=int, default=1, help="Frequency of validation (default: 1)")
# Prompting parameters
parser.add_argument("--prompting_depth", type=int, default=4, help="Depth of prompting (default: 4)")
parser.add_argument("--prompting_length", type=int, default=5, help="Length of prompting (default: 5)")
parser.add_argument("--prompting_type", type=str, default='SD', choices=['', 'S', 'D', 'SD'],
help="Type of prompting. 'S' for Static, 'D' for Dynamic, 'SD' for both (default: 'SD')")
parser.add_argument("--prompting_branch", type=str, default='VL', choices=['', 'V', 'L', 'VL'],
help="Branch of prompting. 'V' for Visual, 'L' for Language, 'VL' for both (default: 'VL')")
parser.add_argument("--use_hsf", type=str2bool, default=True,
help="Use HSF for aggregation. If False, original class embedding is used (default: True)")
parser.add_argument("--k_clusters", type=int, default=20, help="Number of clusters (default: 20)")
args = parser.parse_args()
train(args)
if args.batch_size != 1:
raise NotImplementedError(
"Currently, only batch size of 1 is supported due to unresolved bugs. Please set --batch_size to 1.")
train(args)
|