File size: 7,502 Bytes
a25563f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from math import exp

class FocalLoss(nn.Module):
    """

    copy from: https://github.com/Hsuxu/Loss_ToolBox-PyTorch/blob/master/FocalLoss/FocalLoss.py

    This is a implementation of Focal Loss with smooth label cross entropy supported which is proposed in

    'Focal Loss for Dense Object Detection. (https://arxiv.org/abs/1708.02002)'

        Focal_Loss= -1*alpha*(1-pt)*log(pt)

    :param alpha: (tensor) 3D or 4D the scalar factor for this criterion

    :param gamma: (float,double) gamma > 0 reduces the relative loss for well-classified examples (p>0.5) putting more

                    focus on hard misclassified example

    :param smooth: (float,double) smooth value when cross entropy

    :param balance_index: (int) balance class index, should be specific when alpha is float

    :param size_average: (bool, optional) By default, the losses are averaged over each loss element in the batch.

    """

    def __init__(self, apply_nonlin=None, alpha=None, gamma=2, balance_index=0, smooth=1e-5, size_average=True):
        super(FocalLoss, self).__init__()
        self.apply_nonlin = apply_nonlin
        self.alpha = alpha
        self.gamma = gamma
        self.balance_index = balance_index
        self.smooth = smooth
        self.size_average = size_average

        if self.smooth is not None:
            if self.smooth < 0 or self.smooth > 1.0:
                raise ValueError('smooth value should be in [0,1]')

    def forward(self, logit, target):
        if self.apply_nonlin is not None:
            logit = self.apply_nonlin(logit)
        num_class = logit.shape[1]

        if logit.dim() > 2:
            # N,C,d1,d2 -> N,C,m (m=d1*d2*...)
            logit = logit.view(logit.size(0), logit.size(1), -1)
            logit = logit.permute(0, 2, 1).contiguous()
            logit = logit.view(-1, logit.size(-1))
        target = torch.squeeze(target, 1)
        target = target.view(-1, 1)
        alpha = self.alpha

        if alpha is None:
            alpha = torch.ones(num_class, 1)
        elif isinstance(alpha, (list, np.ndarray)):
            assert len(alpha) == num_class
            alpha = torch.FloatTensor(alpha).view(num_class, 1)
            alpha = alpha / alpha.sum()
        elif isinstance(alpha, float):
            alpha = torch.ones(num_class, 1)
            alpha = alpha * (1 - self.alpha)
            alpha[self.balance_index] = self.alpha

        else:
            raise TypeError('Not support alpha type')

        if alpha.device != logit.device:
            alpha = alpha.to(logit.device)

        idx = target.cpu().long()

        one_hot_key = torch.FloatTensor(target.size(0), num_class).zero_()
        one_hot_key = one_hot_key.scatter_(1, idx, 1)
        if one_hot_key.device != logit.device:
            one_hot_key = one_hot_key.to(logit.device)

        if self.smooth:
            one_hot_key = torch.clamp(
                one_hot_key, self.smooth / (num_class - 1), 1.0 - self.smooth)
        pt = (one_hot_key * logit).sum(1) + self.smooth
        logpt = pt.log()

        gamma = self.gamma

        alpha = alpha[idx]
        alpha = torch.squeeze(alpha)
        loss = -1 * alpha * torch.pow((1 - pt), gamma) * logpt

        if self.size_average:
            loss = loss.mean()
        return loss


class BinaryDiceLoss(nn.Module):
    def __init__(self):
        super(BinaryDiceLoss, self).__init__()

    def forward(self, input, targets):
        # 获取每个批次的大小 N
        N = targets.size()[0]
        # 平滑变量
        smooth = 1
        # 将宽高 reshape 到同一纬度
        input_flat = input.view(N, -1)
        targets_flat = targets.view(N, -1)

        # 计算交集
        intersection = input_flat * targets_flat
        N_dice_eff = (2 * intersection.sum(1) + smooth) / (input_flat.sum(1) + targets_flat.sum(1) + smooth)
        # 计算一个批次中平均每张图的损失
        loss = 1 - N_dice_eff.sum() / N
        return loss




class ConADLoss(nn.Module):
    """Supervised Contrastive Learning: https://arxiv.org/pdf/2004.11362.pdf.

    It also supports the unsupervised contrastive loss in SimCLR"""
    def __init__(self, contrast_mode='all',random_anchors=10):
        super(ConADLoss, self).__init__()
        assert contrast_mode in ['all', 'mean', 'random']
        self.contrast_mode = contrast_mode
        self.random_anchors = random_anchors
    def forward(self, features, labels):
        """Compute loss for model. If both `labels` and `mask` are None,

        it degenerates to SimCLR unsupervised loss:

        https://arxiv.org/pdf/2002.05709.pdf



        Args:

            features: hidden vector of shape [bsz, C, ...].

            labels: ground truth of shape [bsz, 1, ...]., where 1 denotes to abnormal, and 0 denotes to normal

        Returns:

            A loss scalar.

        """
        device = (torch.device('cuda')
                  if features.is_cuda
                  else torch.device('cpu'))
        if len(features.shape) != len(labels.shape):
            raise ValueError('`features` needs to have the same dimensions with labels')

        if len(features.shape) < 3:
            raise ValueError('`features` needs to be [bsz, C, ...],'
                             'at least 3 dimensions are required')

        if len(features.shape) > 3:
            features = features.view(features.shape[0], features.shape[1], -1)
            labels = labels.view(labels.shape[0], labels.shape[1], -1)

        labels = labels.squeeze()
        batch_size = features.shape[0]

        C = features.shape[1]
        normal_feats = features[:, :, labels == 0]
        abnormal_feats = features[:, :, labels == 1]

        normal_feats = normal_feats.permute((1, 0, 2)).contiguous().view(C, -1)
        abnormal_feats = abnormal_feats.permute((1, 0, 2)).contiguous().view(C, -1)

        contrast_count = normal_feats.shape[1]
        contrast_feature = normal_feats

        if self.contrast_mode == 'mean':
            anchor_feature = torch.mean(normal_feats, dim=1)
            anchor_feature = F.normalize(anchor_feature, dim=0, p=2)
            anchor_count = 1
        elif self.contrast_mode == 'all':
            anchor_feature = contrast_feature
            anchor_count = contrast_count
        elif self.contrast_mode == 'random':
            dim_to_sample = 1
            num_samples = min(self.random_anchors, contrast_count)
            permuted_indices = torch.randperm(normal_feats.size(dim_to_sample)).to(normal_feats.device)
            selected_indices = permuted_indices[:num_samples]
            anchor_feature = normal_feats.index_select(dim_to_sample, selected_indices)
        else:
            raise ValueError('Unknown mode: {}'.format(self.contrast_mode))

        # compute logits
        # maximize similarity
        anchor_dot_normal = torch.matmul(anchor_feature.T, normal_feats).mean()

        # minimize similarity
        anchor_dot_abnormal = torch.matmul(anchor_feature.T, abnormal_feats).mean()

        loss = 0
        if normal_feats.shape[1] > 0:
            loss -= anchor_dot_normal
        if abnormal_feats.shape[1] > 0:
            loss += anchor_dot_abnormal

        loss = torch.exp(loss)

        return loss