|
import streamlit as st |
|
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM |
|
import torch |
|
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained("cssupport/t5-small-awesome-text-to-sql") |
|
original_model = AutoModelForSeq2SeqLM.from_pretrained("cssupport/t5-small-awesome-text-to-sql", torch_dtype=torch.bfloat16) |
|
ft_model = AutoModelForSeq2SeqLM.from_pretrained("daljeetsingh/sql_ft_t5small_kag", torch_dtype=torch.bfloat16) |
|
|
|
|
|
device = 'cuda' if torch.cuda.is_available() else 'cpu' |
|
original_model.to(device) |
|
ft_model.to(device) |
|
|
|
|
|
st.title("SQL Generation with T5 Models") |
|
|
|
|
|
input_text = st.text_area("Enter your query:", height=150) |
|
|
|
|
|
if st.button("Generate SQL"): |
|
if input_text: |
|
|
|
inputs = tokenizer(input_text, return_tensors='pt').to(device) |
|
|
|
|
|
with torch.no_grad(): |
|
original_sql = tokenizer.decode( |
|
original_model.generate(inputs["input_ids"], max_new_tokens=200)[0], |
|
skip_special_tokens=True |
|
) |
|
ft_sql = tokenizer.decode( |
|
ft_model.generate(inputs["input_ids"], max_new_tokens=200)[0], |
|
skip_special_tokens=True |
|
) |
|
|
|
|
|
st.subheader("Original Model Output") |
|
st.write(original_sql) |
|
st.subheader("Fine-Tuned Model Output") |
|
st.write(ft_sql) |
|
else: |
|
st.warning("Please enter a query to generate SQL.") |