Spaces:
Runtime error
Runtime error
Canstralian
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -1,73 +1,95 @@
|
|
1 |
import gradio as gr
|
|
|
|
|
|
|
2 |
from huggingface_hub import InferenceClient
|
|
|
3 |
|
4 |
-
#
|
5 |
-
|
6 |
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
for pred in predictions:
|
20 |
-
token, confidence_score = pred["token"], pred["score"]
|
21 |
-
if confidence_score > threshold:
|
22 |
-
flagged_items.append((token, confidence_score))
|
23 |
-
|
24 |
-
if not flagged_items:
|
25 |
-
return "No passwords detected."
|
26 |
-
else:
|
27 |
-
return f"Potential passwords detected: {flagged_items}"
|
28 |
|
|
|
|
|
29 |
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
"""
|
39 |
-
|
40 |
"""
|
41 |
-
|
|
|
|
|
|
|
42 |
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
messages.append({"role": "assistant", "content": val[1]})
|
48 |
|
49 |
-
|
|
|
50 |
detected_passwords = detect_passwords(message)
|
51 |
-
|
52 |
-
|
53 |
-
return response # Output the result
|
54 |
-
|
55 |
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
additional_inputs=[
|
60 |
gr.Textbox(value="You are a password detection chatbot.", label="System message"),
|
61 |
-
gr.
|
62 |
-
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
63 |
-
gr.Slider(
|
64 |
-
minimum=0.1,
|
65 |
-
maximum=1.0,
|
66 |
-
value=0.95,
|
67 |
-
step=0.05,
|
68 |
-
label="Top-p (nucleus sampling)",
|
69 |
-
),
|
70 |
],
|
|
|
71 |
)
|
72 |
|
73 |
if __name__ == "__main__":
|
|
|
1 |
import gradio as gr
|
2 |
+
from transformers import Trainer, TrainingArguments, BertForSequenceClassification, BertTokenizer
|
3 |
+
from datasets import load_dataset
|
4 |
+
from huggingface_hub import login
|
5 |
from huggingface_hub import InferenceClient
|
6 |
+
import torch
|
7 |
|
8 |
+
# Authenticate with Hugging Face
|
9 |
+
login()
|
10 |
|
11 |
+
# Load Dataset from Kaggle (you can change this to your specific Kaggle dataset)
|
12 |
+
# Example: Load a dataset related to password classification, or any text classification dataset
|
13 |
+
dataset = load_dataset("imdb") # Replace with your own dataset, e.g., Kaggle dataset
|
14 |
+
|
15 |
+
# Load Tokenizer and Model
|
16 |
+
model_name = "bert-base-uncased"
|
17 |
+
tokenizer = BertTokenizer.from_pretrained(model_name)
|
18 |
+
model = BertForSequenceClassification.from_pretrained(model_name, num_labels=2)
|
19 |
+
|
20 |
+
# Preprocess the Dataset
|
21 |
+
def preprocess_function(examples):
|
22 |
+
return tokenizer(examples['text'], padding="max_length", truncation=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
|
24 |
+
# Apply preprocessing to dataset
|
25 |
+
tokenized_datasets = dataset.map(preprocess_function, batched=True)
|
26 |
|
27 |
+
# Split into training and evaluation datasets
|
28 |
+
train_dataset = tokenized_datasets["train"]
|
29 |
+
eval_dataset = tokenized_datasets["test"]
|
30 |
+
|
31 |
+
# Define Training Arguments
|
32 |
+
training_args = TrainingArguments(
|
33 |
+
output_dir="./results", # output directory
|
34 |
+
num_train_epochs=3, # number of training epochs
|
35 |
+
per_device_train_batch_size=8, # batch size for training
|
36 |
+
per_device_eval_batch_size=16, # batch size for evaluation
|
37 |
+
warmup_steps=500, # number of warmup steps for learning rate scheduler
|
38 |
+
weight_decay=0.01, # strength of weight decay
|
39 |
+
logging_dir="./logs", # directory for storing logs
|
40 |
+
logging_steps=10,
|
41 |
+
evaluation_strategy="epoch", # evaluate each epoch
|
42 |
+
save_strategy="epoch", # save model each epoch
|
43 |
+
)
|
44 |
+
|
45 |
+
# Initialize Trainer
|
46 |
+
trainer = Trainer(
|
47 |
+
model=model, # the instantiated 🤗 Transformers model to be trained
|
48 |
+
args=training_args, # training arguments, defined above
|
49 |
+
train_dataset=train_dataset, # training dataset
|
50 |
+
eval_dataset=eval_dataset, # evaluation dataset
|
51 |
+
)
|
52 |
+
|
53 |
+
# Train the Model
|
54 |
+
trainer.train()
|
55 |
+
|
56 |
+
# Save the Model and Tokenizer
|
57 |
+
model.save_pretrained("./password_sniffer_model")
|
58 |
+
tokenizer.save_pretrained("./password_sniffer_tokenizer")
|
59 |
+
|
60 |
+
# Load the fine-tuned model and tokenizer
|
61 |
+
model = BertForSequenceClassification.from_pretrained("./password_sniffer_model")
|
62 |
+
tokenizer = BertTokenizer.from_pretrained("./password_sniffer_tokenizer")
|
63 |
+
|
64 |
+
# Setup Hugging Face Inference Client
|
65 |
+
client = InferenceClient("password_sniffer_model")
|
66 |
+
|
67 |
+
def detect_passwords(text):
|
68 |
"""
|
69 |
+
Detect potential passwords using the trained BERT model.
|
70 |
"""
|
71 |
+
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True, max_length=512)
|
72 |
+
outputs = model(**inputs)
|
73 |
+
predictions = torch.softmax(outputs.logits, dim=-1)
|
74 |
+
predicted_class = torch.argmax(predictions, dim=-1).item()
|
75 |
|
76 |
+
if predicted_class == 1: # Assuming '1' represents potential password
|
77 |
+
return "Potential password detected."
|
78 |
+
else:
|
79 |
+
return "No password detected."
|
|
|
80 |
|
81 |
+
# Gradio Interface
|
82 |
+
def respond(message, history, system_message, max_tokens, temperature, top_p):
|
83 |
detected_passwords = detect_passwords(message)
|
84 |
+
return detected_passwords
|
|
|
|
|
|
|
85 |
|
86 |
+
demo = gr.Interface(
|
87 |
+
fn=respond,
|
88 |
+
inputs=[
|
|
|
89 |
gr.Textbox(value="You are a password detection chatbot.", label="System message"),
|
90 |
+
gr.Textbox(value="Hello, your password might be 12345!", label="User input"),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
91 |
],
|
92 |
+
outputs="text",
|
93 |
)
|
94 |
|
95 |
if __name__ == "__main__":
|