Spaces:
Running
Running
import pandas as pd | |
from sklearn.preprocessing import StandardScaler, PolynomialFeatures | |
def load_data(file_path): | |
"""Load dataset from a CSV file.""" | |
return pd.read_csv(file_path) | |
def scale_features(df): | |
"""Scale numerical features using StandardScaler.""" | |
numerical_cols = df.select_dtypes(include=['float64', 'int64']).columns | |
scaler = StandardScaler() | |
df[numerical_cols] = scaler.fit_transform(df[numerical_cols]) | |
return df | |
def create_polynomial_features(df, degree=2, selected_columns=None): | |
"""Create polynomial features. | |
Args: | |
df: Input DataFrame | |
degree: Degree of polynomial features (default: 2) | |
selected_columns: List of column names to use for polynomial features. | |
If None, uses all numerical columns (default: None) | |
""" | |
if selected_columns is not None: | |
numerical_cols = [col for col in selected_columns if col in df.columns] | |
if not numerical_cols: | |
raise ValueError("None of the selected columns found in DataFrame") | |
else: | |
numerical_cols = df.select_dtypes(include=['float64', 'int64']).columns | |
poly = PolynomialFeatures(degree=degree, include_bias=False) | |
poly_features = poly.fit_transform(df[numerical_cols]) | |
poly_feature_names = poly.get_feature_names_out(numerical_cols) | |
poly_df = pd.DataFrame(poly_features, columns=poly_feature_names) | |
df = df.join(poly_df) | |
return df | |
def process_data(file_path): | |
"""Load, process, and return the dataset.""" | |
df = load_data(file_path) | |
df = scale_features(df) | |
df = create_polynomial_features(df) | |
return df | |
if __name__ == "__main__": | |
file_path = 'path_to_your_data.csv' # Replace with your actual file path | |
processed_data = process_data(file_path) | |
processed_data.to_csv('processed_data_with_features.csv', index=False) | |