Spaces:
Running
Running
Canstralian
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -1,38 +1,55 @@
|
|
1 |
import gradio as gr
|
2 |
from huggingface_hub import InferenceClient
|
3 |
from transformers import pipeline
|
4 |
-
from typing import List, Dict, Any
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
def generate_attack(
|
7 |
prompt: str,
|
8 |
-
history: List[
|
9 |
) -> List[str]:
|
10 |
"""
|
11 |
Simulates a Blackhat AI scenario by generating attack strategies and potential impacts.
|
12 |
|
13 |
Args:
|
14 |
prompt (str): The user's input to the simulator.
|
15 |
-
history (List[
|
16 |
|
17 |
Returns:
|
18 |
List[str]: A list of attack responses from the AI.
|
19 |
"""
|
|
|
|
|
|
|
20 |
messages = [
|
21 |
-
{
|
22 |
-
"role": "system",
|
23 |
-
"content": f"Responding to {prompt}..."
|
24 |
-
}
|
25 |
]
|
26 |
-
|
27 |
-
for
|
28 |
-
if
|
29 |
-
messages.append({"role": "user", "content":
|
30 |
-
if
|
31 |
-
messages.append({"role": "assistant", "content":
|
32 |
|
33 |
messages.append({"role": "user", "content": prompt})
|
|
|
34 |
response = ""
|
35 |
-
|
36 |
for message in client.chat_completion(
|
37 |
messages,
|
38 |
max_tokens=100, # limit the length of responses
|
@@ -41,40 +58,39 @@ def generate_attack(
|
|
41 |
top_p=None, # disable top-p filtering
|
42 |
):
|
43 |
token = message.choices[0].delta.content
|
44 |
-
|
45 |
response += token
|
46 |
yield response
|
47 |
|
48 |
def simulate_attack(
|
49 |
prompt: str,
|
50 |
-
history: List[
|
51 |
) -> List[str]:
|
52 |
"""
|
53 |
Simulates a Blackhat AI scenario by generating attack strategies and potential impacts.
|
54 |
|
55 |
Args:
|
56 |
prompt (str): The user's input to the simulator.
|
57 |
-
history (List[
|
58 |
|
59 |
Returns:
|
60 |
List[str]: A list of attack responses from the AI.
|
61 |
"""
|
|
|
|
|
|
|
62 |
messages = [
|
63 |
-
{
|
64 |
-
"role": "system",
|
65 |
-
"content": f"Simulating a Blackhat AI scenario..."
|
66 |
-
}
|
67 |
]
|
68 |
-
|
69 |
-
for
|
70 |
-
if
|
71 |
-
messages.append({"role": "user", "content":
|
72 |
-
if
|
73 |
-
messages.append({"role": "assistant", "content":
|
74 |
|
75 |
messages.append({"role": "user", "content": prompt})
|
|
|
76 |
response = ""
|
77 |
-
|
78 |
for message in client.chat_completion(
|
79 |
messages,
|
80 |
max_tokens=100, # limit the length of responses
|
@@ -83,26 +99,44 @@ def simulate_attack(
|
|
83 |
top_p=None, # disable top-p filtering
|
84 |
):
|
85 |
token = message.choices[0].delta.content
|
86 |
-
|
87 |
response += token
|
88 |
yield response
|
89 |
|
90 |
-
# Define the Gradio ChatInterface with security-focused configuration
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
101 |
],
|
|
|
102 |
title="Blackhat AI Simulator",
|
103 |
description=(
|
104 |
-
"This simulator generates adversarial scenarios, analyzes attack vectors, and provides ethical countermeasures.
|
|
|
105 |
),
|
|
|
106 |
)
|
107 |
|
108 |
if __name__ == "__main__":
|
|
|
1 |
import gradio as gr
|
2 |
from huggingface_hub import InferenceClient
|
3 |
from transformers import pipeline
|
4 |
+
from typing import List, Dict, Any, Tuple
|
5 |
+
import re
|
6 |
+
|
7 |
+
# Assuming that `InferenceClient` is initialized properly
|
8 |
+
client = InferenceClient()
|
9 |
+
|
10 |
+
def is_valid_input(input_str: str) -> bool:
|
11 |
+
"""
|
12 |
+
Validates the input using regex to prevent malicious patterns.
|
13 |
+
|
14 |
+
Args:
|
15 |
+
input_str (str): The user's input string to be validated.
|
16 |
+
|
17 |
+
Returns:
|
18 |
+
bool: True if input is safe; False otherwise.
|
19 |
+
"""
|
20 |
+
pattern = r'^[A-Za-z0-9\s,.!?-]*$' # Allows alphanumeric and some punctuation
|
21 |
+
return bool(re.match(pattern, input_str))
|
22 |
|
23 |
def generate_attack(
|
24 |
prompt: str,
|
25 |
+
history: List[Tuple[str, str]],
|
26 |
) -> List[str]:
|
27 |
"""
|
28 |
Simulates a Blackhat AI scenario by generating attack strategies and potential impacts.
|
29 |
|
30 |
Args:
|
31 |
prompt (str): The user's input to the simulator.
|
32 |
+
history (List[Tuple[str, str]]): The user's message history with timestamps, where each tuple contains (user_message, assistant_response).
|
33 |
|
34 |
Returns:
|
35 |
List[str]: A list of attack responses from the AI.
|
36 |
"""
|
37 |
+
if not is_valid_input(prompt):
|
38 |
+
raise ValueError("Invalid input detected. Please use only alphanumeric characters and allowed punctuation.")
|
39 |
+
|
40 |
messages = [
|
41 |
+
{"role": "system", "content": f"Responding to {prompt}..."}
|
|
|
|
|
|
|
42 |
]
|
43 |
+
|
44 |
+
for user_msg, assistant_msg in history:
|
45 |
+
if user_msg:
|
46 |
+
messages.append({"role": "user", "content": user_msg})
|
47 |
+
if assistant_msg:
|
48 |
+
messages.append({"role": "assistant", "content": assistant_msg})
|
49 |
|
50 |
messages.append({"role": "user", "content": prompt})
|
51 |
+
|
52 |
response = ""
|
|
|
53 |
for message in client.chat_completion(
|
54 |
messages,
|
55 |
max_tokens=100, # limit the length of responses
|
|
|
58 |
top_p=None, # disable top-p filtering
|
59 |
):
|
60 |
token = message.choices[0].delta.content
|
|
|
61 |
response += token
|
62 |
yield response
|
63 |
|
64 |
def simulate_attack(
|
65 |
prompt: str,
|
66 |
+
history: List[Tuple[str, str]],
|
67 |
) -> List[str]:
|
68 |
"""
|
69 |
Simulates a Blackhat AI scenario by generating attack strategies and potential impacts.
|
70 |
|
71 |
Args:
|
72 |
prompt (str): The user's input to the simulator.
|
73 |
+
history (List[Tuple[str, str]]): The user's message history with timestamps, where each tuple contains (user_message, assistant_response).
|
74 |
|
75 |
Returns:
|
76 |
List[str]: A list of attack responses from the AI.
|
77 |
"""
|
78 |
+
if not is_valid_input(prompt):
|
79 |
+
raise ValueError("Invalid input detected. Please use only alphanumeric characters and allowed punctuation.")
|
80 |
+
|
81 |
messages = [
|
82 |
+
{"role": "system", "content": "Simulating a Blackhat AI scenario..."}
|
|
|
|
|
|
|
83 |
]
|
84 |
+
|
85 |
+
for user_msg, assistant_msg in history:
|
86 |
+
if user_msg:
|
87 |
+
messages.append({"role": "user", "content": user_msg})
|
88 |
+
if assistant_msg:
|
89 |
+
messages.append({"role": "assistant", "content": assistant_msg})
|
90 |
|
91 |
messages.append({"role": "user", "content": prompt})
|
92 |
+
|
93 |
response = ""
|
|
|
94 |
for message in client.chat_completion(
|
95 |
messages,
|
96 |
max_tokens=100, # limit the length of responses
|
|
|
99 |
top_p=None, # disable top-p filtering
|
100 |
):
|
101 |
token = message.choices[0].delta.content
|
|
|
102 |
response += token
|
103 |
yield response
|
104 |
|
105 |
+
# Define the Gradio ChatInterface with file upload and security-focused configuration
|
106 |
+
def handle_file_upload(file: Any) -> str:
|
107 |
+
"""
|
108 |
+
Handles file uploads by extracting contents or performing actions based on the file type.
|
109 |
+
|
110 |
+
Args:
|
111 |
+
file (Any): The uploaded file.
|
112 |
+
|
113 |
+
Returns:
|
114 |
+
str: A response or summary of the file content.
|
115 |
+
"""
|
116 |
+
if file is None:
|
117 |
+
return "No file uploaded."
|
118 |
+
|
119 |
+
file_type = file.name.split('.')[-1].lower()
|
120 |
+
if file_type in ['txt', 'json', 'csv']:
|
121 |
+
content = file.read().decode("utf-8")
|
122 |
+
return f"File uploaded: {file.name}, {len(content)} characters."
|
123 |
+
else:
|
124 |
+
return "Unsupported file type. Please upload a .txt, .json, or .csv file."
|
125 |
+
|
126 |
+
demo = gr.Interface(
|
127 |
+
fn=generate_attack,
|
128 |
+
inputs=[
|
129 |
+
gr.Textbox(label="User Prompt", placeholder="Enter attack scenario...", lines=2),
|
130 |
+
gr.File(label="Upload File", file_types=["txt", "json", "csv"], file_count="single"),
|
131 |
+
gr.Textbox(value="You are an AI simulator for cybersecurity training, designed to generate attack scenarios, analyze their impacts, and suggest countermeasures.", label="System Message")
|
132 |
],
|
133 |
+
outputs="text",
|
134 |
title="Blackhat AI Simulator",
|
135 |
description=(
|
136 |
+
"This simulator generates adversarial scenarios, analyzes attack vectors, and provides ethical countermeasures. "
|
137 |
+
"Use responsibly for cybersecurity training and awareness."
|
138 |
),
|
139 |
+
theme="dark"
|
140 |
)
|
141 |
|
142 |
if __name__ == "__main__":
|