Danieldu
add code
a89d9fd
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import sys
__dir__ = os.path.dirname(os.path.abspath(__file__))
sys.path.append(__dir__)
sys.path.append(os.path.abspath(os.path.join(__dir__, '..')))
from ppocr.utils.logging import get_logger
logger = get_logger()
import cv2
import numpy as np
import time
from PIL import Image
from ppocr.utils.utility import get_image_file_list
from tools.infer.utility import draw_ocr, draw_boxes, str2bool
from ppstructure.utility import draw_structure_result
from ppstructure.predict_system import to_excel
import requests
import json
import base64
def cv2_to_base64(image):
return base64.b64encode(image).decode('utf8')
def draw_server_result(image_file, res):
img = cv2.imread(image_file)
image = Image.fromarray(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))
if len(res) == 0:
return np.array(image)
keys = res[0].keys()
if 'text_region' not in keys: # for ocr_rec, draw function is invalid
logger.info("draw function is invalid for ocr_rec!")
return None
elif 'text' not in keys: # for ocr_det
logger.info("draw text boxes only!")
boxes = []
for dno in range(len(res)):
boxes.append(res[dno]['text_region'])
boxes = np.array(boxes)
draw_img = draw_boxes(image, boxes)
return draw_img
else: # for ocr_system
logger.info("draw boxes and texts!")
boxes = []
texts = []
scores = []
for dno in range(len(res)):
boxes.append(res[dno]['text_region'])
texts.append(res[dno]['text'])
scores.append(res[dno]['confidence'])
boxes = np.array(boxes)
scores = np.array(scores)
draw_img = draw_ocr(
image, boxes, texts, scores, draw_txt=True, drop_score=0.5)
return draw_img
def save_structure_res(res, save_folder, image_file):
img = cv2.imread(image_file)
excel_save_folder = os.path.join(save_folder, os.path.basename(image_file))
os.makedirs(excel_save_folder, exist_ok=True)
# save res
with open(
os.path.join(excel_save_folder, 'res.txt'), 'w',
encoding='utf8') as f:
for region in res:
if region['type'] == 'Table':
excel_path = os.path.join(excel_save_folder,
'{}.xlsx'.format(region['bbox']))
to_excel(region['res'], excel_path)
elif region['type'] == 'Figure':
x1, y1, x2, y2 = region['bbox']
print(region['bbox'])
roi_img = img[y1:y2, x1:x2, :]
img_path = os.path.join(excel_save_folder,
'{}.jpg'.format(region['bbox']))
cv2.imwrite(img_path, roi_img)
else:
for text_result in region['res']:
f.write('{}\n'.format(json.dumps(text_result)))
def main(args):
image_file_list = get_image_file_list(args.image_dir)
is_visualize = False
headers = {"Content-type": "application/json"}
cnt = 0
total_time = 0
for image_file in image_file_list:
img = open(image_file, 'rb').read()
if img is None:
logger.info("error in loading image:{}".format(image_file))
continue
img_name = os.path.basename(image_file)
# seed http request
starttime = time.time()
data = {'images': [cv2_to_base64(img)]}
r = requests.post(
url=args.server_url, headers=headers, data=json.dumps(data))
elapse = time.time() - starttime
total_time += elapse
logger.info("Predict time of %s: %.3fs" % (image_file, elapse))
res = r.json()["results"][0]
logger.info(res)
if args.visualize:
draw_img = None
if 'structure_table' in args.server_url:
to_excel(res['html'], './{}.xlsx'.format(img_name))
elif 'structure_system' in args.server_url:
save_structure_res(res['regions'], args.output, image_file)
else:
draw_img = draw_server_result(image_file, res)
if draw_img is not None:
if not os.path.exists(args.output):
os.makedirs(args.output)
cv2.imwrite(
os.path.join(args.output, os.path.basename(image_file)),
draw_img[:, :, ::-1])
logger.info("The visualized image saved in {}".format(
os.path.join(args.output, os.path.basename(image_file))))
cnt += 1
if cnt % 100 == 0:
logger.info("{} processed".format(cnt))
logger.info("avg time cost: {}".format(float(total_time) / cnt))
def parse_args():
import argparse
parser = argparse.ArgumentParser(description="args for hub serving")
parser.add_argument("--server_url", type=str, required=True)
parser.add_argument("--image_dir", type=str, required=True)
parser.add_argument("--visualize", type=str2bool, default=False)
parser.add_argument("--output", type=str, default='./hubserving_result')
args = parser.parse_args()
return args
if __name__ == '__main__':
args = parse_args()
main(args)