|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import random |
|
import ast |
|
from PIL import Image, ImageDraw, ImageFont |
|
import numpy as np |
|
from tools.infer.utility import draw_ocr_box_txt, str2bool, init_args as infer_args |
|
|
|
|
|
def init_args(): |
|
parser = infer_args() |
|
|
|
|
|
parser.add_argument("--output", type=str, default='./output') |
|
|
|
parser.add_argument("--table_max_len", type=int, default=488) |
|
parser.add_argument("--table_algorithm", type=str, default='TableAttn') |
|
parser.add_argument("--table_model_dir", type=str) |
|
parser.add_argument( |
|
"--merge_no_span_structure", type=str2bool, default=True) |
|
parser.add_argument( |
|
"--table_char_dict_path", |
|
type=str, |
|
default="../ppocr/utils/dict/table_structure_dict_ch.txt") |
|
|
|
parser.add_argument("--layout_model_dir", type=str) |
|
parser.add_argument( |
|
"--layout_dict_path", |
|
type=str, |
|
default="../ppocr/utils/dict/layout_dict/layout_publaynet_dict.txt") |
|
parser.add_argument( |
|
"--layout_score_threshold", |
|
type=float, |
|
default=0.5, |
|
help="Threshold of score.") |
|
parser.add_argument( |
|
"--layout_nms_threshold", |
|
type=float, |
|
default=0.5, |
|
help="Threshold of nms.") |
|
|
|
parser.add_argument("--kie_algorithm", type=str, default='LayoutXLM') |
|
parser.add_argument("--ser_model_dir", type=str) |
|
parser.add_argument("--re_model_dir", type=str) |
|
parser.add_argument("--use_visual_backbone", type=str2bool, default=True) |
|
parser.add_argument( |
|
"--ser_dict_path", |
|
type=str, |
|
default="../train_data/XFUND/class_list_xfun.txt") |
|
|
|
parser.add_argument("--ocr_order_method", type=str, default=None) |
|
|
|
parser.add_argument( |
|
"--mode", |
|
type=str, |
|
choices=['structure', 'kie'], |
|
default='kie', |
|
help='structure and kie is supported') |
|
parser.add_argument( |
|
"--image_orientation", |
|
type=bool, |
|
default=False, |
|
help='Whether to enable image orientation recognition') |
|
parser.add_argument( |
|
"--layout", |
|
type=str2bool, |
|
default=False, |
|
help='Whether to enable layout analysis') |
|
parser.add_argument( |
|
"--table", |
|
type=str2bool, |
|
default=False, |
|
help='In the forward, whether the table area uses table recognition') |
|
parser.add_argument( |
|
"--ocr", |
|
type=str2bool, |
|
default=True, |
|
help='In the forward, whether the non-table area is recognition by ocr') |
|
|
|
parser.add_argument( |
|
"--recovery", |
|
type=str2bool, |
|
default=False, |
|
help='Whether to enable layout of recovery') |
|
parser.add_argument( |
|
"--use_pdf2docx_api", |
|
type=str2bool, |
|
default=False, |
|
help='Whether to use pdf2docx api') |
|
|
|
return parser |
|
|
|
|
|
def parse_args(): |
|
parser = init_args() |
|
return parser.parse_args() |
|
|
|
|
|
def draw_structure_result(image, result, font_path): |
|
if isinstance(image, np.ndarray): |
|
image = Image.fromarray(image) |
|
boxes, txts, scores = [], [], [] |
|
|
|
img_layout = image.copy() |
|
draw_layout = ImageDraw.Draw(img_layout) |
|
text_color = (255, 255, 255) |
|
text_background_color = (80, 127, 255) |
|
catid2color = {} |
|
font_size = 15 |
|
font = ImageFont.truetype(font_path, font_size, encoding="utf-8") |
|
|
|
for region in result: |
|
if region['type'] not in catid2color: |
|
box_color = (random.randint(0, 255), random.randint(0, 255), |
|
random.randint(0, 255)) |
|
catid2color[region['type']] = box_color |
|
else: |
|
box_color = catid2color[region['type']] |
|
box_layout = region['bbox'] |
|
draw_layout.rectangle( |
|
[(box_layout[0], box_layout[1]), (box_layout[2], box_layout[3])], |
|
outline=box_color, |
|
width=3) |
|
text_w, text_h = font.getsize(region['type']) |
|
draw_layout.rectangle( |
|
[(box_layout[0], box_layout[1]), |
|
(box_layout[0] + text_w, box_layout[1] + text_h)], |
|
fill=text_background_color) |
|
draw_layout.text( |
|
(box_layout[0], box_layout[1]), |
|
region['type'], |
|
fill=text_color, |
|
font=font) |
|
|
|
if region['type'] == 'table': |
|
pass |
|
else: |
|
for text_result in region['res']: |
|
boxes.append(np.array(text_result['text_region'])) |
|
txts.append(text_result['text']) |
|
scores.append(text_result['confidence']) |
|
|
|
im_show = draw_ocr_box_txt( |
|
img_layout, boxes, txts, scores, font_path=font_path, drop_score=0) |
|
return im_show |
|
|