Danieldu
add code
a89d9fd
# Copyright 2020 IBM
# Author: [email protected]
#
# This is free software; you can redistribute it and/or modify
# it under the terms of the Apache 2.0 License.
#
# This software is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# Apache 2.0 License for more details.
from rapidfuzz.distance import Levenshtein
from apted import APTED, Config
from apted.helpers import Tree
from lxml import etree, html
from collections import deque
from .parallel import parallel_process
from tqdm import tqdm
class TableTree(Tree):
def __init__(self, tag, colspan=None, rowspan=None, content=None, *children):
self.tag = tag
self.colspan = colspan
self.rowspan = rowspan
self.content = content
self.children = list(children)
def bracket(self):
"""Show tree using brackets notation"""
if self.tag == 'td':
result = '"tag": %s, "colspan": %d, "rowspan": %d, "text": %s' % \
(self.tag, self.colspan, self.rowspan, self.content)
else:
result = '"tag": %s' % self.tag
for child in self.children:
result += child.bracket()
return "{{{}}}".format(result)
class CustomConfig(Config):
def rename(self, node1, node2):
"""Compares attributes of trees"""
#print(node1.tag)
if (node1.tag != node2.tag) or (node1.colspan != node2.colspan) or (node1.rowspan != node2.rowspan):
return 1.
if node1.tag == 'td':
if node1.content or node2.content:
#print(node1.content, )
return Levenshtein.normalized_distance(node1.content, node2.content)
return 0.
class CustomConfig_del_short(Config):
def rename(self, node1, node2):
"""Compares attributes of trees"""
if (node1.tag != node2.tag) or (node1.colspan != node2.colspan) or (node1.rowspan != node2.rowspan):
return 1.
if node1.tag == 'td':
if node1.content or node2.content:
#print('before')
#print(node1.content, node2.content)
#print('after')
node1_content = node1.content
node2_content = node2.content
if len(node1_content) < 3:
node1_content = ['####']
if len(node2_content) < 3:
node2_content = ['####']
return Levenshtein.normalized_distance(node1_content, node2_content)
return 0.
class CustomConfig_del_block(Config):
def rename(self, node1, node2):
"""Compares attributes of trees"""
if (node1.tag != node2.tag) or (node1.colspan != node2.colspan) or (node1.rowspan != node2.rowspan):
return 1.
if node1.tag == 'td':
if node1.content or node2.content:
node1_content = node1.content
node2_content = node2.content
while ' ' in node1_content:
print(node1_content.index(' '))
node1_content.pop(node1_content.index(' '))
while ' ' in node2_content:
print(node2_content.index(' '))
node2_content.pop(node2_content.index(' '))
return Levenshtein.normalized_distance(node1_content, node2_content)
return 0.
class TEDS(object):
''' Tree Edit Distance basead Similarity
'''
def __init__(self, structure_only=False, n_jobs=1, ignore_nodes=None):
assert isinstance(n_jobs, int) and (
n_jobs >= 1), 'n_jobs must be an integer greather than 1'
self.structure_only = structure_only
self.n_jobs = n_jobs
self.ignore_nodes = ignore_nodes
self.__tokens__ = []
def tokenize(self, node):
''' Tokenizes table cells
'''
self.__tokens__.append('<%s>' % node.tag)
if node.text is not None:
self.__tokens__ += list(node.text)
for n in node.getchildren():
self.tokenize(n)
if node.tag != 'unk':
self.__tokens__.append('</%s>' % node.tag)
if node.tag != 'td' and node.tail is not None:
self.__tokens__ += list(node.tail)
def load_html_tree(self, node, parent=None):
''' Converts HTML tree to the format required by apted
'''
global __tokens__
if node.tag == 'td':
if self.structure_only:
cell = []
else:
self.__tokens__ = []
self.tokenize(node)
cell = self.__tokens__[1:-1].copy()
new_node = TableTree(node.tag,
int(node.attrib.get('colspan', '1')),
int(node.attrib.get('rowspan', '1')),
cell, *deque())
else:
new_node = TableTree(node.tag, None, None, None, *deque())
if parent is not None:
parent.children.append(new_node)
if node.tag != 'td':
for n in node.getchildren():
self.load_html_tree(n, new_node)
if parent is None:
return new_node
def evaluate(self, pred, true):
''' Computes TEDS score between the prediction and the ground truth of a
given sample
'''
if (not pred) or (not true):
return 0.0
parser = html.HTMLParser(remove_comments=True, encoding='utf-8')
pred = html.fromstring(pred, parser=parser)
true = html.fromstring(true, parser=parser)
if pred.xpath('body/table') and true.xpath('body/table'):
pred = pred.xpath('body/table')[0]
true = true.xpath('body/table')[0]
if self.ignore_nodes:
etree.strip_tags(pred, *self.ignore_nodes)
etree.strip_tags(true, *self.ignore_nodes)
n_nodes_pred = len(pred.xpath(".//*"))
n_nodes_true = len(true.xpath(".//*"))
n_nodes = max(n_nodes_pred, n_nodes_true)
tree_pred = self.load_html_tree(pred)
tree_true = self.load_html_tree(true)
distance = APTED(tree_pred, tree_true,
CustomConfig()).compute_edit_distance()
return 1.0 - (float(distance) / n_nodes)
else:
return 0.0
def batch_evaluate(self, pred_json, true_json):
''' Computes TEDS score between the prediction and the ground truth of
a batch of samples
@params pred_json: {'FILENAME': 'HTML CODE', ...}
@params true_json: {'FILENAME': {'html': 'HTML CODE'}, ...}
@output: {'FILENAME': 'TEDS SCORE', ...}
'''
samples = true_json.keys()
if self.n_jobs == 1:
scores = [self.evaluate(pred_json.get(
filename, ''), true_json[filename]['html']) for filename in tqdm(samples)]
else:
inputs = [{'pred': pred_json.get(
filename, ''), 'true': true_json[filename]['html']} for filename in samples]
scores = parallel_process(
inputs, self.evaluate, use_kwargs=True, n_jobs=self.n_jobs, front_num=1)
scores = dict(zip(samples, scores))
return scores
def batch_evaluate_html(self, pred_htmls, true_htmls):
''' Computes TEDS score between the prediction and the ground truth of
a batch of samples
'''
if self.n_jobs == 1:
scores = [self.evaluate(pred_html, true_html) for (
pred_html, true_html) in zip(pred_htmls, true_htmls)]
else:
inputs = [{"pred": pred_html, "true": true_html} for(
pred_html, true_html) in zip(pred_htmls, true_htmls)]
scores = parallel_process(
inputs, self.evaluate, use_kwargs=True, n_jobs=self.n_jobs, front_num=1)
return scores
if __name__ == '__main__':
import json
import pprint
with open('sample_pred.json') as fp:
pred_json = json.load(fp)
with open('sample_gt.json') as fp:
true_json = json.load(fp)
teds = TEDS(n_jobs=4)
scores = teds.batch_evaluate(pred_json, true_json)
pp = pprint.PrettyPrinter()
pp.pprint(scores)