|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import paddle |
|
import numbers |
|
import numpy as np |
|
from collections import defaultdict |
|
|
|
|
|
class DictCollator(object): |
|
""" |
|
data batch |
|
""" |
|
|
|
def __call__(self, batch): |
|
|
|
data_dict = defaultdict(list) |
|
to_tensor_keys = [] |
|
for sample in batch: |
|
for k, v in sample.items(): |
|
if isinstance(v, (np.ndarray, paddle.Tensor, numbers.Number)): |
|
if k not in to_tensor_keys: |
|
to_tensor_keys.append(k) |
|
data_dict[k].append(v) |
|
for k in to_tensor_keys: |
|
data_dict[k] = paddle.to_tensor(data_dict[k]) |
|
return data_dict |
|
|
|
|
|
class ListCollator(object): |
|
""" |
|
data batch |
|
""" |
|
|
|
def __call__(self, batch): |
|
|
|
data_dict = defaultdict(list) |
|
to_tensor_idxs = [] |
|
for sample in batch: |
|
for idx, v in enumerate(sample): |
|
if isinstance(v, (np.ndarray, paddle.Tensor, numbers.Number)): |
|
if idx not in to_tensor_idxs: |
|
to_tensor_idxs.append(idx) |
|
data_dict[idx].append(v) |
|
for idx in to_tensor_idxs: |
|
data_dict[idx] = paddle.to_tensor(data_dict[idx]) |
|
return list(data_dict.values()) |
|
|
|
|
|
class SSLRotateCollate(object): |
|
""" |
|
bach: [ |
|
[(4*3xH*W), (4,)] |
|
[(4*3xH*W), (4,)] |
|
... |
|
] |
|
""" |
|
|
|
def __call__(self, batch): |
|
output = [np.concatenate(d, axis=0) for d in zip(*batch)] |
|
return output |
|
|
|
|
|
class DyMaskCollator(object): |
|
""" |
|
batch: [ |
|
image [batch_size, channel, maxHinbatch, maxWinbatch] |
|
image_mask [batch_size, channel, maxHinbatch, maxWinbatch] |
|
label [batch_size, maxLabelLen] |
|
label_mask [batch_size, maxLabelLen] |
|
... |
|
] |
|
""" |
|
|
|
def __call__(self, batch): |
|
max_width, max_height, max_length = 0, 0, 0 |
|
bs, channel = len(batch), batch[0][0].shape[0] |
|
proper_items = [] |
|
for item in batch: |
|
if item[0].shape[1] * max_width > 1600 * 320 or item[0].shape[ |
|
2] * max_height > 1600 * 320: |
|
continue |
|
max_height = item[0].shape[1] if item[0].shape[ |
|
1] > max_height else max_height |
|
max_width = item[0].shape[2] if item[0].shape[ |
|
2] > max_width else max_width |
|
max_length = len(item[1]) if len(item[ |
|
1]) > max_length else max_length |
|
proper_items.append(item) |
|
|
|
images, image_masks = np.zeros( |
|
(len(proper_items), channel, max_height, max_width), |
|
dtype='float32'), np.zeros( |
|
(len(proper_items), 1, max_height, max_width), dtype='float32') |
|
labels, label_masks = np.zeros( |
|
(len(proper_items), max_length), dtype='int64'), np.zeros( |
|
(len(proper_items), max_length), dtype='int64') |
|
|
|
for i in range(len(proper_items)): |
|
_, h, w = proper_items[i][0].shape |
|
images[i][:, :h, :w] = proper_items[i][0] |
|
image_masks[i][:, :h, :w] = 1 |
|
l = len(proper_items[i][1]) |
|
labels[i][:l] = proper_items[i][1] |
|
label_masks[i][:l] = 1 |
|
|
|
return images, image_masks, labels, label_masks |
|
|