|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from __future__ import absolute_import |
|
from __future__ import division |
|
from __future__ import print_function |
|
|
|
import os |
|
import sys |
|
|
|
__dir__ = os.path.dirname(os.path.abspath(__file__)) |
|
sys.path.insert(0, __dir__) |
|
sys.path.insert(0, os.path.abspath(os.path.join(__dir__, '..'))) |
|
|
|
import paddle |
|
from ppocr.data import build_dataloader |
|
from ppocr.modeling.architectures import build_model |
|
from ppocr.postprocess import build_post_process |
|
from ppocr.metrics import build_metric |
|
from ppocr.utils.save_load import load_model |
|
import tools.program as program |
|
|
|
|
|
def main(): |
|
global_config = config['Global'] |
|
|
|
valid_dataloader = build_dataloader(config, 'Eval', device, logger) |
|
|
|
|
|
post_process_class = build_post_process(config['PostProcess'], |
|
global_config) |
|
|
|
|
|
|
|
if hasattr(post_process_class, 'character'): |
|
char_num = len(getattr(post_process_class, 'character')) |
|
if config['Architecture']["algorithm"] in ["Distillation", |
|
]: |
|
for key in config['Architecture']["Models"]: |
|
if config['Architecture']['Models'][key]['Head'][ |
|
'name'] == 'MultiHead': |
|
out_channels_list = {} |
|
if config['PostProcess'][ |
|
'name'] == 'DistillationSARLabelDecode': |
|
char_num = char_num - 2 |
|
out_channels_list['CTCLabelDecode'] = char_num |
|
out_channels_list['SARLabelDecode'] = char_num + 2 |
|
config['Architecture']['Models'][key]['Head'][ |
|
'out_channels_list'] = out_channels_list |
|
else: |
|
config['Architecture']["Models"][key]["Head"][ |
|
'out_channels'] = char_num |
|
elif config['Architecture']['Head'][ |
|
'name'] == 'MultiHead': |
|
out_channels_list = {} |
|
if config['PostProcess']['name'] == 'SARLabelDecode': |
|
char_num = char_num - 2 |
|
out_channels_list['CTCLabelDecode'] = char_num |
|
out_channels_list['SARLabelDecode'] = char_num + 2 |
|
config['Architecture']['Head'][ |
|
'out_channels_list'] = out_channels_list |
|
else: |
|
config['Architecture']["Head"]['out_channels'] = char_num |
|
|
|
model = build_model(config['Architecture']) |
|
extra_input_models = [ |
|
"SRN", "NRTR", "SAR", "SEED", "SVTR", "VisionLAN", "RobustScanner" |
|
] |
|
extra_input = False |
|
if config['Architecture']['algorithm'] == 'Distillation': |
|
for key in config['Architecture']["Models"]: |
|
extra_input = extra_input or config['Architecture']['Models'][key][ |
|
'algorithm'] in extra_input_models |
|
else: |
|
extra_input = config['Architecture']['algorithm'] in extra_input_models |
|
if "model_type" in config['Architecture'].keys(): |
|
if config['Architecture']['algorithm'] == 'CAN': |
|
model_type = 'can' |
|
else: |
|
model_type = config['Architecture']['model_type'] |
|
else: |
|
model_type = None |
|
|
|
|
|
eval_class = build_metric(config['Metric']) |
|
|
|
use_amp = config["Global"].get("use_amp", False) |
|
amp_level = config["Global"].get("amp_level", 'O2') |
|
amp_custom_black_list = config['Global'].get('amp_custom_black_list', []) |
|
if use_amp: |
|
AMP_RELATED_FLAGS_SETTING = { |
|
'FLAGS_cudnn_batchnorm_spatial_persistent': 1, |
|
'FLAGS_max_inplace_grad_add': 8, |
|
} |
|
paddle.fluid.set_flags(AMP_RELATED_FLAGS_SETTING) |
|
scale_loss = config["Global"].get("scale_loss", 1.0) |
|
use_dynamic_loss_scaling = config["Global"].get( |
|
"use_dynamic_loss_scaling", False) |
|
scaler = paddle.amp.GradScaler( |
|
init_loss_scaling=scale_loss, |
|
use_dynamic_loss_scaling=use_dynamic_loss_scaling) |
|
if amp_level == "O2": |
|
model = paddle.amp.decorate( |
|
models=model, level=amp_level, master_weight=True) |
|
else: |
|
scaler = None |
|
|
|
best_model_dict = load_model( |
|
config, model, model_type=config['Architecture']["model_type"]) |
|
if len(best_model_dict): |
|
logger.info('metric in ckpt ***************') |
|
for k, v in best_model_dict.items(): |
|
logger.info('{}:{}'.format(k, v)) |
|
|
|
|
|
metric = program.eval(model, valid_dataloader, post_process_class, |
|
eval_class, model_type, extra_input, scaler, |
|
amp_level, amp_custom_black_list) |
|
logger.info('metric eval ***************') |
|
for k, v in metric.items(): |
|
logger.info('{}:{}'.format(k, v)) |
|
|
|
|
|
if __name__ == '__main__': |
|
config, device, logger, vdl_writer = program.preprocess() |
|
main() |
|
|