|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import numpy as np |
|
from ppstructure.table.table_master_match import deal_eb_token, deal_bb |
|
|
|
|
|
def distance(box_1, box_2): |
|
x1, y1, x2, y2 = box_1 |
|
x3, y3, x4, y4 = box_2 |
|
dis = abs(x3 - x1) + abs(y3 - y1) + abs(x4 - x2) + abs(y4 - y2) |
|
dis_2 = abs(x3 - x1) + abs(y3 - y1) |
|
dis_3 = abs(x4 - x2) + abs(y4 - y2) |
|
return dis + min(dis_2, dis_3) |
|
|
|
|
|
def compute_iou(rec1, rec2): |
|
""" |
|
computing IoU |
|
:param rec1: (y0, x0, y1, x1), which reflects |
|
(top, left, bottom, right) |
|
:param rec2: (y0, x0, y1, x1) |
|
:return: scala value of IoU |
|
""" |
|
|
|
S_rec1 = (rec1[2] - rec1[0]) * (rec1[3] - rec1[1]) |
|
S_rec2 = (rec2[2] - rec2[0]) * (rec2[3] - rec2[1]) |
|
|
|
|
|
sum_area = S_rec1 + S_rec2 |
|
|
|
|
|
left_line = max(rec1[1], rec2[1]) |
|
right_line = min(rec1[3], rec2[3]) |
|
top_line = max(rec1[0], rec2[0]) |
|
bottom_line = min(rec1[2], rec2[2]) |
|
|
|
|
|
if left_line >= right_line or top_line >= bottom_line: |
|
return 0.0 |
|
else: |
|
intersect = (right_line - left_line) * (bottom_line - top_line) |
|
return (intersect / (sum_area - intersect)) * 1.0 |
|
|
|
|
|
class TableMatch: |
|
def __init__(self, filter_ocr_result=False, use_master=False): |
|
self.filter_ocr_result = filter_ocr_result |
|
self.use_master = use_master |
|
|
|
def __call__(self, structure_res, dt_boxes, rec_res): |
|
pred_structures, pred_bboxes = structure_res |
|
if self.filter_ocr_result: |
|
dt_boxes, rec_res = self._filter_ocr_result(pred_bboxes, dt_boxes, |
|
rec_res) |
|
matched_index = self.match_result(dt_boxes, pred_bboxes) |
|
if self.use_master: |
|
pred_html, pred = self.get_pred_html_master(pred_structures, |
|
matched_index, rec_res) |
|
else: |
|
pred_html, pred = self.get_pred_html(pred_structures, matched_index, |
|
rec_res) |
|
return pred_html |
|
|
|
def match_result(self, dt_boxes, pred_bboxes): |
|
matched = {} |
|
for i, gt_box in enumerate(dt_boxes): |
|
distances = [] |
|
for j, pred_box in enumerate(pred_bboxes): |
|
if len(pred_box) == 8: |
|
pred_box = [ |
|
np.min(pred_box[0::2]), np.min(pred_box[1::2]), |
|
np.max(pred_box[0::2]), np.max(pred_box[1::2]) |
|
] |
|
distances.append((distance(gt_box, pred_box), |
|
1. - compute_iou(gt_box, pred_box) |
|
)) |
|
sorted_distances = distances.copy() |
|
|
|
sorted_distances = sorted( |
|
sorted_distances, key=lambda item: (item[1], item[0])) |
|
if distances.index(sorted_distances[0]) not in matched.keys(): |
|
matched[distances.index(sorted_distances[0])] = [i] |
|
else: |
|
matched[distances.index(sorted_distances[0])].append(i) |
|
return matched |
|
|
|
def get_pred_html(self, pred_structures, matched_index, ocr_contents): |
|
end_html = [] |
|
td_index = 0 |
|
for tag in pred_structures: |
|
if '</td>' in tag: |
|
if '<td></td>' == tag: |
|
end_html.extend('<td>') |
|
if td_index in matched_index.keys(): |
|
b_with = False |
|
if '<b>' in ocr_contents[matched_index[td_index][ |
|
0]] and len(matched_index[td_index]) > 1: |
|
b_with = True |
|
end_html.extend('<b>') |
|
for i, td_index_index in enumerate(matched_index[td_index]): |
|
content = ocr_contents[td_index_index][0] |
|
if len(matched_index[td_index]) > 1: |
|
if len(content) == 0: |
|
continue |
|
if content[0] == ' ': |
|
content = content[1:] |
|
if '<b>' in content: |
|
content = content[3:] |
|
if '</b>' in content: |
|
content = content[:-4] |
|
if len(content) == 0: |
|
continue |
|
if i != len(matched_index[ |
|
td_index]) - 1 and ' ' != content[-1]: |
|
content += ' ' |
|
end_html.extend(content) |
|
if b_with: |
|
end_html.extend('</b>') |
|
if '<td></td>' == tag: |
|
end_html.append('</td>') |
|
else: |
|
end_html.append(tag) |
|
td_index += 1 |
|
else: |
|
end_html.append(tag) |
|
return ''.join(end_html), end_html |
|
|
|
def get_pred_html_master(self, pred_structures, matched_index, |
|
ocr_contents): |
|
end_html = [] |
|
td_index = 0 |
|
for token in pred_structures: |
|
if '</td>' in token: |
|
txt = '' |
|
b_with = False |
|
if td_index in matched_index.keys(): |
|
if '<b>' in ocr_contents[matched_index[td_index][ |
|
0]] and len(matched_index[td_index]) > 1: |
|
b_with = True |
|
for i, td_index_index in enumerate(matched_index[td_index]): |
|
content = ocr_contents[td_index_index][0] |
|
if len(matched_index[td_index]) > 1: |
|
if len(content) == 0: |
|
continue |
|
if content[0] == ' ': |
|
content = content[1:] |
|
if '<b>' in content: |
|
content = content[3:] |
|
if '</b>' in content: |
|
content = content[:-4] |
|
if len(content) == 0: |
|
continue |
|
if i != len(matched_index[ |
|
td_index]) - 1 and ' ' != content[-1]: |
|
content += ' ' |
|
txt += content |
|
if b_with: |
|
txt = '<b>{}</b>'.format(txt) |
|
if '<td></td>' == token: |
|
token = '<td>{}</td>'.format(txt) |
|
else: |
|
token = '{}</td>'.format(txt) |
|
td_index += 1 |
|
token = deal_eb_token(token) |
|
end_html.append(token) |
|
html = ''.join(end_html) |
|
html = deal_bb(html) |
|
return html, end_html |
|
|
|
def _filter_ocr_result(self, pred_bboxes, dt_boxes, rec_res): |
|
y1 = pred_bboxes[:, 1::2].min() |
|
new_dt_boxes = [] |
|
new_rec_res = [] |
|
|
|
for box, rec in zip(dt_boxes, rec_res): |
|
if np.max(box[1::2]) < y1: |
|
continue |
|
new_dt_boxes.append(box) |
|
new_rec_res.append(rec) |
|
return new_dt_boxes, new_rec_res |
|
|